
A New Setting of fuzzy separation axioms

Ismail Ibedou∗

Department of Mathematics, Faculty of Science, Benha University, Benha, (13518), Egypt

Current Address: Community College in AL-QUWAY’IYAH,

Dept. of Computer Science, King Saud University, KSA

Web site: http://faculty.ksu.edu.sa/Ismail−Ibedou, E-mail: iibedou@ksu.edu.sa

Abstract
In this paper, we introduce the L-separation axioms GT2 1

2

and GT5 using the notion of L-

neighborhood filter defined by Gähler in 1995. We define also the axiom GT6 depending on the
notion of L-numbers presented by Gähler in 1994. Denote by GTi-space for the L-topological space
which is GTi, i = 2 1

2
, 5, 6. The GTi-spaces, i = 0, 1, 2, 3, 3 1

2
, 4 had been introduced and studied by

the author in 2001 - 2004 in separate six papers. All the axioms GTi are based only on usual points
and ordinary sets and they are the usual ones in the classical case L = {0, 1}. It is shown that the
axioms GTi, i = 2 1

2
, 5, 6 fulfill many properties analogous to the usual axioms and moreover, the

initial and the final of GTi-spaces are also GTi-spaces, i = 2 1

2
, 5, 6.

Keywords: L-neighborhood filters; L-real numbers; GTi-spaces; GT2 1

2

-spaces; Completely normal

spaces; GT5-spaces; Perfectly normal spaces; GT6-spaces.

1. Introduction

We had introduced in [2, 3, 4, 6, 7, 8] the L-separation axioms GTi, i = 0, 1, 2, 3, 31
2
, 4

using the L-neighborhood filters at a point to define the axioms GTi, i = 0, 1, 2 and
using the L-neighborhood filters at a point and at a set to define the axioms GTi,
i = 3, 4, and by using the L-real numbers, defined by Gähler in [12], to define the
axiom GT3 1

2
. We denote by a GTi-space for the L- topological space which is GTi,

i = 0, 1, 2, 3, 31
2
, 4.

In this paper, we define the GT2 1
2
-spaces and the GT5-spaces depending on the

L-neighborhood filters at a point and at a set, respectively. The GT5-space is defined
as a completely normal GT1-space.

We introduce also the GT6-spaces using the L-real numbers. The set of all L-
real numbers is called L-real line and is denoted by RL, where L is a complete
chain. Here, using the L-topological space (IL,=), where I = [0, 1] is the closed unit

∗E-mail: ismail−ibedou@yahoo.com
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interval and = is the L-topology on IL, a notion of perfectly normal L-topological
spaces is introduced. The GT6-spaces are the L-topological spaces which are GT1

and perfectly normal in our sense.

These L-separation axioms are extensions with respect to the functor ω in sense
of Lowen ([17]), this means that an induced L-topological space (X, ω(T )) is GTi if
and only if the underlying topological space (X, T ) is Ti for all i = 21

2
, 5, 6. Moreover,

the implications between the axioms GT2 1
2
, GT5 and GT6 and the previous axioms

GTi, i = 2, 3, 4 goes well. Counterexamples are given to assure these implications.

We show also that the initial and final L-topological spaces of a family of GTi-
spaces, i = 21

2
, 5, 6, are GTi. Therefore the L-topological product spaces, subspaces,

sum spaces and quotient spaces of GTi-spaces, i = 21
2
, 5, 6, are GTi-spaces.

2. Preliminaries

Let L be a complete chain with different least and greatest elements 0 and 1, re-
spectively. Assume that an order-reversing involution α 7→ α′ of L is fixed. Denote
by LX the set of all L-subsets of a non-empty set X. For each L-set f ∈ LX , let f ′

denote the complement of f , defined by f ′(x) = f(x)′ for all x ∈ X.

In the following the L-topology τ on a set X in sense of ([9, 15]) will be used.
Denote by intτ and clτ for the interior and the closure operators with respect to τ .
Let (X, τ) and (Y, σ) be two L-topological spaces. Then the mapping f : (X, τ) →
(Y, σ) is called L-continuous provided intσg ◦ f ≤ intτ (g ◦ f) for all g ∈ LY . If T

is an ordinary topology on X, then the induced L-topology ([17]) on X is given by
ω(T ) = {f ∈ LX | sαf ∈ T for all α ∈ L1}, where sαf = {x ∈ X | α < f(x)}.

L-filters. By an L-filter on X ([11, 13]) is meant a mapping M : LX → L such
that: M(α) ≤ α holds for all α ∈ L and M(1) = 1, and M(f ∧ g) = M(f)∧M(g)
for all f, g ∈ LX . An L-filter M is called homogeneous if M(α) = α for all α ∈ L.
For each x ∈ X, the mapping ẋ : LX → L defined by ẋ(f) = f(x) for all f ∈ LX

is a homogeneous L- filter on X. If M and N are L-filters on X, M is said to be
finer than N , denoted by M ≤ N , provided M(f) ≥ N (f) holds for all f ∈ LX .
By M 6≤ N we denote that M is not finer than N .

A closure of an L-filter M on an L-topological space (X, τ) is the L-filter clM
on X defined by ([14]):

clM(f) =
∨

clτ g≤f

M(g).

For all L-filters L and M on X we have ([14]):

L ≤M implies clL ≤ clM (2.1)

and
M≤ clM (2.2)

2



For each non-empty set A of L-filters on X, the supremum
∨

M∈A
M with respect

to the finer relation of L-filters exists and we have

(
∨

M∈A

M)(f) =
∧

M∈A

M(f)

for all f ∈ LX ([11]). The infimum
∧

M∈A
M doesn’t exist in general. The infimum

∧
M∈A

M of A exists if and only if for each non-empty finite subset {M1, . . . ,Mn}

of A we have M1(f1) ∧ · · · ∧Mn(fn) ≤ sup(f1 ∧ · · · ∧ fn) for all f1, . . . , fn ∈ LX . If
the infimum of A exists, then for each f ∈ LX and n as a positive integer we have
([11]):

(
∧

M∈A

M)(f) =
∨

f1∧···∧fn≤f,

M1,...,Mn∈A

(M1(f1) ∧ · · · ∧Mn(fn)).

If the infimum L1 ∧ L2 and the infimum M1 ∧M2, of L-filters L1,L2 and M1,M2

on X exist, respectively, then we have

L1 ≤M1 and L2 ≤M2 implies L1 ∧ L2 ≤M1 ∧M2 (2.3)

L-neighborhood filters. For each L-topological space (X, τ) and each x ∈ X,
the L-neighborhood filter of the space (X, τ) at x is an L-filter N (x) : LX → L on
X defined by N (x)(f) = intτf(x) for all f ∈ LX ([14]). The L-neighborhood filter
N (F ) at an ordinary subset F of X is the L-filter on X defined, by the author in
[4], by means of N (x), x ∈ F as:

N (F ) =
∨

x∈F

N (x). (2.4)

L-real numbers. Gähler defined in [12] the L-real numbers as convex, normal,
compactly supported and upper semi–continuous L-subsets of the set of real numbers
R. Each real number a is identified with the crisp L-real number a∼ by a∼(ξ) = 1
whenever ξ = a and a∼(ξ) = 0 otherwise. The set of all L-real numbers is called
L-real line RL.

By Gähler’s L-unit interval ([12]) is meant the set IL defined by

IL = {x ∈ R∗
L | x ≤ 1∼},

where I = [0, 1] and R∗
L = {x ∈ RL | x(0) = 1 and 0∼ ≤ x}. Gähler had showed

in [12] that the class

{Rδ|IL
| δ ∈ I } ∪ {Rδ|IL

| δ ∈ I } ∪ { 0∼|IL
}

is a base for an L-topology = on IL, where Rδ and Rδ are the L-sets of RL into L

defined by
Rδ(x) =

∨

α>δ

x(α) and Rδ(x) = (
∨

α≥δ

x(α))′
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for all x ∈ RL and δ ∈ R, and note that Rδ|IL
, Rδ|IL

are the restrictions of Rδ, Rδ

on IL, respectively.

L-metric spaces. In the sequel will be shown that the L-metric space in sense
of S. Gähler and W. Gähler, which had been introduced in [10], is an example of our
GT3 1

2
-space. By an L-metric on a set X we mean ([10]) a mapping % : X×X −→ R∗

L

such that the following conditions are fulfilled:

(1) %(x, y) = 0∼ if and only if x = y

(2) %(x, y) = %(y, x) (symmetry)

(3) %(x, y) ≤ %(x, z) + %(z, y) (triangle inequality).

A set X equipped with an L-metric % on X is called an L-metric space.

Note that 0∼ denotes the L-number which has values 1 at 0 and 0 otherwise.

To each L-metric % on a set X is generated canonically a stratified L-topology τ%

which has {ε ◦ %x | ε ∈ E , x ∈ X} as a base, where %x : X → R∗
L is the mapping

defined by %x(y) = %(x, y) and

E = {α ∧Rδ|R∗

L
| δ > 0, α ∈ L } ∪ {α | α ∈ L },

here α has R∗
L as domain and Rδ|R∗

L
is the restriction of Rδ on R∗

L.

GTi-spaces. In [3, 4, 7] we had defined the L-separation axioms GTi, i =
0, 1, 2, 3, 31

2
, 4, and in the following we recall some of these axioms which we need in

this paper. An L-topological space (X, τ) is called:

(1) GT1 if for all x, y ∈ X with x 6= y we have ẋ 6≤ N (y) and ẏ 6≤ N (x).

(2) GT2 if for all x, y ∈ X with x 6= y we have N (x) ∧N (y) does not exist.

(3) regular if N (x)∧N (F ) does not exist for all x ∈ X, F ∈ P (X) with F = clτF
and x 6∈ F (or if N (x) = clN (x) for all x ∈ X).

(4) GT3 if it is regular and GT1.

(5) completely regular if for all x 6∈ F ∈ τ ′, there exists an L-continuous mapping
f : (X, τ) → (IL,=) such that f(x) = 1 and f(y) = 0 for all y ∈ F .

(6) GT3 1
2
-space (or an L-Tychonoff space) if it is GT1 and completely regular

(7) normal if for all F1, F2 ∈ P (X) with F1 = clτF1, F2 = clτF2 and F1 ∩ F2 = ∅
we have N (F1) ∧N (F2) does not exist.

(8) GT4 if it is normal and GT1.
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Denote by GTi-space for the L-topological space which is GTi.

Proposition 2.1 [3, 4]

(1) Every GTi-space is GTi−1-space for each i = 1, 2, 3, 4, and GT3 1
2
-spaces fulfill

the following:

every GT4-space is a GT3 1
2
-space and every GT3 1

2
-space is a GT3-space.

(2) The L-topological subspaces and the L-topological product spaces of a family of
GTi-spaces are GTi-spaces for each i = 0, 1, 2, 3, 4.

3. GT21

2

-spaces

Now, we shall introduce our notion of T2 1
2
-spaces in the fuzzy case. It will be called

GT2 1
2
-spaces.

Definition 3.1 An L-topological space (X, τ) is said to be GT2 1
2

if for all x, y ∈ X

with x 6= y we have clN (x) ∧ clN (y) does not exist.

By a GT2 1
2
-space we mean the L-topological space which is GT2 1

2
.

In the following an example of a GT2 1
2
-space.

Example 3.1 Let X = {x, y} in which x 6= y and let τ = {0, 1, x1, y1}. Then
{x} = clτ{x} and {y} = clτ{y}, and thus

clN (x)(x1) =
∨

clτ g≤x1

N (x)(g) =
∨

clτ g≤x1

intτg(x) ≥ intτx1(x) = 1.

Also, clN (y)(y1) = 1. That is, there are f = x1 ∈ LX and g = y1 ∈ LX such that
clN (x)(f) ∧ clN (y)(g) > sup(f ∧ g). Hence, (X, τ) is a GT2 1

2
-space.

The following proposition states that the implication from GT2 1
2
-spaces to GT2-

spaces goes well.

Proposition 3.1 Every GT2 1
2
-space is GT2-space.

Proof. Since N (x) ≤ clN (x), by means of (2.2), for all x ∈ X, then from (2.3)
we get N (x) ∧ N (y) ≤ clN (x) ∧ clN (y), and therefore clN (x) ∧ clN (y) does not
exist implies N (x) ∧ N (y) does not exist as well. Thus for all x 6= y in X we have
N (x) ∧N (y) does not exist and hence (X, τ) is a GT2-space. 2

The class of GT2-spaces is larger than the class of GT2 1
2
-spaces. In this example

we introduce a GT2-space which is not GT2 1
2
-space.
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Example 3.2 Let the L-topological space (X, τ) be, in the crisp case, the space so
called Irrational Slope Topological Space. That is, X is the closed upper half plane
{(x, y) | y ≥ 0} in Q2 and some irrational number θ is fixed, and τ is defined as
follows: for each point (x, y) ∈ X, the τ -neighborhoods will be {(x, y)} ∪Bε(

x+y

θ
)∪

Bε(
x−y

θ
), where Bε(η) = {r ∈ Q | η − ε < r < η + ε} for all η ∈ R and for all

ε > 0. Each τ -neighborhood of (x, y) consists of (x, y) itself plus two open intervals
centered at the two irrational points x+y

θ
and x−y

θ
, and the lines joining these points

to (x, y) have slope ±θ. Hence, we get that (X, τ) is a GT2-space and it is not a
GT2 1

2
-space.

The following proposition and example show that the class of GT2 1
2
-spaces is

larger than the class of GT3-spaces.

Proposition 3.2 Every GT3-space is a GT2 1
2
-space.

Proof. Let x 6= y in X and (X, τ) a GT3-space. Then (X, τ) is a GT1-space and
clN (x) = N (x) for all x ∈ X. Hence, x 6∈ {y} ∈ τ ′ and clN (x) ∧ clN (y) =
N (x) ∧N (y) does not exist, and thus (X, τ) is a GT2 1

2
-space. 2

In this example we introduce a GT2 1
2
-space which is not GT3-space.

Example 3.3 Let the L-topological space (X, τ) be, in the crisp case, the space so
called Half Disc Topological Space. That is, if P = {(x, y) ∈ R2 | y > 0} is the
open upper half plane with the natural topology T on it, and S denote the real-axis.
Then X = P ∪S and τ is generated on X by adding to the elements of T all sets of
the form {x} ∪ (P ∩U), where x ∈ S and U is the Euclidean usual neighborhood of
(x, 0) in the plane R2. That is, τ is generated by a basis consisting of two types of
neighborhoods: all open discs contained in P for all (x, y) ∈ P , and open half discs
centered at {z} together with {z} itself for all z ∈ S. Hence, we get that (X, τ) is
a GT2 1

2
-space and it is not a GT3-space.

Here, we show that the GT2 1
2
-space is an extension with respect to the functor

ω in sense of Lowen ([17]).

Proposition 3.3 A topological space (X, T ) is a T2 1
2
-space if and only if the in-

duced L-topological space (X, ω(T )) is a GT2 1
2
-space.

Proof. If (X, T ) is a T2 1
2
-space and x 6= y in X, then there are Ox,Oy ∈ T such

that Ox ∩ Oy = ∅. Taking f = χOx
, g = χOy

we get that sup(f ∧ g) = 0, and from
that clω(T )f = f and clω(T )g = g we get that

clN (x) (f) ∧ clN (y) (g) =
∨

clω(T )h≤f

intω(T )h(x) ∧
∨

clω(T )k≤g

intω(T )k(y)

= intω(T )f(x) ∧ intω(T )g(y) = 1.

6



Hence, clN (x) ∧ clN (y) does not exist. That is, (X, ω(T )) is a GT2 1
2
-space.

Conversely; if (X, ω(T )) is a GT2 1
2
-space, then for x 6= y in X, there exist

f, g ∈ LX such that clN (x) (f) ∧ clN (y) (g) > sup(f ∧ g), that is,

∨

clω(T )h≤f

intω(T )h(x) ∧
∨

clω(T )k≤g

intω(T )k(y) > sup(f ∧ g),

which means that there exist λ, µ ∈ ω(T )′ such that intω(T )λ(x) ∧ intω(T )µ(y) >

sup(f ∧ g). Taking sαλ and sαµ for all α ∈ L1, we get two disjoint closed neighbor-
hoods of x and y, respectively. Hence, (X, T ) is a T2 1

2
-space. 2

The following proposition shows that the finer L-topological space of a GT2 1
2
-

space is also a GT2 1
2
-space.

Proposition 3.4 Let (X, τ) be a GT2 1
2
-space and let σ be an L-topology on X finer

than τ . Then (X, σ) is also a GT2 1
2
-space.

Proof. Let Nσ(x) and Nτ (x) be the L-neighborhood filters at x with respect to σ

and τ , respectively. Since σ ⊇ τ means that Nσ(x) ≤ Nτ (x) holds for all x ∈ X,
then (2.1) implies that clNσ(x) ≤ clNτ (x) holds for all x ∈ X. Hence, we have
from (2.3), clNσ(x) ∧ clNσ(y) ≤ clNτ (x) ∧ clNτ (y). Since clNτ (x) ∧ clNτ (y) does
not exist, then clNσ(x)∧ clNσ(y) does not exist, that is, (X, σ) is a GT2 1

2
-space. 2

Initial GT2 1
2
-spaces. Consider a family of L-topological spaces ((Xi, τi))i∈I .

The supremum
∨
i∈I

f−1
i (τi) of the family (f−1

i (τi))i∈I , where f−1
i (τi) = {f−1

i (g) | g ∈

τi} and fi : X → Xi, and the infimum
∧
i∈I

fi(τi) of the family (fi(τi))i∈I , where

fi(τi) = {g ∈ LX | f−1
i (g) ∈ τi} and fi : Xi → X fulfill the following result.

Proposition 3.5 [5, 16]
∨
i∈I

f−1
i (τi) and

∧
i∈I

fi(τi) are the initial and the final, in the

categorical sense ([1]), of (τi)i∈I with respect to (fi)i∈I , respectively.

In the following we shall show that the initial L-topology τ =
∨
i∈I

f−1
i (τi) of a

family (τi)i∈I of GT2 1
2
-topologies with respect to (fi)i∈I fulfills the following results.

At first consider the case of one mapping.

Proposition 3.6 Let f : X → Y be an injective mapping and (Y, σ) be a GT2 1
2
-

space. Then the initial L-topological space (X, τ = f−1(σ)) is also GT2 1
2
.

Proof. From Proposition 3.5, we have f : X → Y is L-continuous. Since f : X → Y

is injective, then x 6= y in X implies f(x) 6= f(y) in Y and then there are g, h ∈ LY
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such that clN (f(x)) (g) ∧ clN (f(y)) (h) > sup(g ∧ h), that is,
∨

clσk≤g
intσk(f(x)) ∧

∨
clσl≤h

intσl(f(y)) > sup(g ∧ h). From that f is L-continuous, it follows (intσk) ◦ f ≤

intτ (k ◦ f) and (clσk) ◦ f ≥ clτ (k ◦ f) for all k ∈ LY , and hence

∨

clτ (k◦f)≤(g◦f)

intτ (k◦f)(x)∧
∨

clτ (l◦f)≤(h◦f)

intτ (l◦f)(y) > sup(g∧h) ≥ sup(g ◦f ∧h◦f),

where
∨

y∈Y
(g ∧ h)(y) ≥

∨
x∈X

(g ∧ h)(f(x)) =
∨

x∈X
(g ◦ f ∧ h ◦ f)(x) in general, which

means that there are λ = g ◦ f ∈ LX and µ = h ◦ f ∈ LX such that

∨

clτ η≤λ

intτη(x) ∧
∨

clτ ξ≤µ

intτξ(y) > sup(λ ∧ µ).

Hence, clN (x)∧clN (y) does not exist in (X, τ = f−1(σ)) and therefore (X, f−1(σ))
is a GT2 1

2
-space. 2

Assume now that a family ((Xi, τi))i∈I of GT2 1
2
-spaces and a family (fi)i∈I of

mappings fi : X → Xi which are injective for some i ∈ I are given where I may be
any class.

Proposition 3.7 For the family ((Xi, τi))i∈I of GT2 1
2
-spaces, the initial L-topological

space (X, τ =
∨
i∈I

f−1
i (τi)) is also GT2 1

2
.

Proof. By a similar way, as in the proof of Proposition 3.6, we get that (X, τ) is
GT2 1

2
-space. 2

The subspaces and the product spaces of GT2 1
2
-spaces, in the categorical sense,

are special initial GT2 1
2
-spaces ([1]), and therefore we have the following corollary.

Corollary 3.1 The L-topological subspaces and the L-topological product spaces of
a family of GT2 1

2
-spaces are also GT2 1

2
-spaces.

Final GT2 1
2
-spaces. The final L-topology τ =

∧
i∈I

fi(τi) of a family (τi)i∈I of

GT2 1
2
-topologies with respect to (fi)i∈I fulfills the following.

In case of one mapping we get this result.

Proposition 3.8 Let f : X → Y be a surjective L-open mapping and (X, τ) be a
GT2 1

2
-space. Then the final L-topological space (Y, σ = f(τ)) is also GT2 1

2
.
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Proof. Since f is surjective, then a 6= b in Y implies there are x 6= y in X such
that a = f(x), b = f(y). (X, τ) is GT2 1

2
implies there are g, h ∈ LX such that

clN (x) (g) ∧ clN (y) (h) > sup(g ∧ h). From (2.4), we have N (x) ≤ N (f−1(a))
and N (y) ≤ N (f−1(b)), and from (2.1), we get that clN (x) ≤ clN (f−1(a)) and
clN (y) ≤ clN (f−1(b)). Hence, clN (f−1(a)) (g) ∧ clN (f−1(b)) (h) > sup(g ∧ h),
that is,

∨
clτ k≤g

intτk(f−1(a)) ∧
∨

clτ l≤h
intτ l(f

−1(b)) > sup(g ∧ h), which means that

∨

clτ k≤g

f(intτk)(a) ∧
∨

clτ l≤h

f(intτ l)(b) > sup(g ∧ h).

From that f is L-open, it follows

f(intτk) ≤ intf(τ)f(k)

for all k ∈ LX , and hence
∨

clτ k≤g
intf(τ)f(k)(a) ∧

∨
clτ l≤h

intf(τ)f(l)(b) > sup(g ∧ h) ≥

sup(f(g) ∧ f(h)), where
∨

x∈X

(g ∧ h)(x) ≥
∨

y∈Y

(g ∧ h)(f−1(y)) =
∨

y∈Y

(f(g) ∧ f(h))(y)

in general, and also from that f is L-continuous we get

clf(τ)h(f(x)) ≥ clτ (h ◦ f)(x)

for all x ∈ X and all h ∈ LY , which implies
∨

clf(τ)η≤f(g)

intf(τ)η(a) ∧
∨

clf(τ)ξ≤f(h)

intf(τ)ξ(b) > sup(f(g) ∧ f(h)).

Taking λ = f(g) ∈ LY and µ = f(h) ∈ LY we get
∨

clf(τ)k≤λ

intf(τ)k(a) ∧
∨

clf(τ)l≤µ

intf(τ)l(b) > sup(λ ∧ µ).

Thus, clN (a) ∧ clN (b) does not exist and therefore (Y, f(τ)) is a GT2 1
2
-space. 2

For any class I we have the following result.

Proposition 3.9 Let ((Xi, τi))i∈I be a family of GT2 1
2
-spaces and (fi)i∈I a family

of mappings fi : Xi → X which are surjective L-open for some i ∈ I. Then the final
L-topological space (X, τ =

∧
i∈I

fi(τi)) is also GT2 1
2
.

Proof. By using a similar proof, as in case of Proposition 3.8, we get that (X, τ) is
a GT2 1

2
-space. 2

The quotient and the sum spaces of GT2 1
2
-spaces, in the categorical sense, are

special final GT2 1
2
-spaces ([1]) and therefore we have the following result.

Corollary 3.2 The L-topological quotient spaces and the L-topological sum spaces
of a family of GT2 1

2
-spaces are also GT2 1

2
-spaces.
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4. GT5-spaces

In this section we shall introduce the GT5-spaces and make for these spaces a similar
study to the study of GT2 1

2
-spaces.

Let (X, τ) be an L-topological space and let A, B ⊆ X. Then A, B are called
separated if A ∩ clτB = clτA ∩B = ∅.

Definition 4.1 An L-topological space (X, τ) is called completely normal if for any
two separated sets A, B in X we have N (A) ∧N (B) does not exist.

Definition 4.2 An L-topological space (X, τ) is called GT5 if it is completely nor-
mal and GT1.

A L-topological space (X, τ) is called a completely normal space or a GT5-space if it
fulfills the axioms of being completely normal or GT5, respectively.

We have the following example for GT5-spaces.

Example 4.1 Let X = {x, y} with x 6= y and let τ = {0, 1, x1, y1}. Then {x}, {y}
are the only separated sets which fulfill the condition of being completely normal
and it is also GT1. Hence, (X, τ) is a GT5-space.

The following proposition shows that the implication between GT5-spaces and
GT4-spaces goes well.

Proposition 4.1 Every GT5-space is a GT4-space.

Proof. Let (X, τ) be a GT5-space. Then (X, τ) is GT1 and completely normal. Since
any two disjoint closed subsets A, B in (X, τ) are separated, then N (A)∧N (B) does
not exist and thus (X, τ) is a normal space. Therefore, (X, τ) is a GT4-space. 2

Here, an example for GT4-spaces which are not GT5-spaces.

Example 4.2 The Tychonoff Plank Space, in the crisp case, is an example for a
GT4-space and not GT5-space. It is known that the Tychonoff Plank Space (T, τ) is
defined as follows: The Tychonoff Plank T is defined to be [0, Ω] × [0, ω], where Ω
is the first uncountable ordinal and ω is the first infinite ordinal, and both ordinal
spaces [0, Ω] and [0, ω] are given the interval topology, and τ is the product interval
topology on T .

In the following theorem there will be introduced some equivalent definitions for
the completely normal spaces.
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Theorem 4.1 Let (X, τ) be an L-topological space. Then the following are equiva-
lent.

(1) (X, τ) is completely normal.

(2) Every subspace (A, τA) is normal.

(3) Every open subspace (A, τA) is normal.

Proof. (1) ⇒ (2): Let Nτ (M) and NτA
(M) be the L-neighborhood filters at a

subset M of X with respect to τ and τA, respectively. Let B, C be two disjoint
closed sets in (A, τA). Then there are F1, F2 ∈ τ ′ such that B = A∩F1, C = A∩F2

and B ∩ C = A ∩ (F1 ∩ F2) = ∅. Now clτB ∩ C = B ∩ clτC ⊆ A ∩ (F1 ∩ F2) = ∅,
that is, B, C are separated sets in (X, τ) and then we have Nτ (B)∧Nτ (C) does not
exist. Since Nτ (B) = NτA

(B) for all B ⊆ A, then NτA
(B) ∧NτA

(C) does not exist.
Hence, (A, τA) is a normal space.

(2) ⇒ (3): Clear.

(3) ⇒ (1): Let B, C be separated sets in (X, τ). Then C ⊆ clτC \ clτB = F1,
B ⊆ clτB\clτC = F2, F1∩F2 = ∅. Both of F1 and F2 are closed in the open subspace
(A, τA), where A = X \ (clτB ∩ clτC), F1 = clτC ∩A and F2 = clτB ∩A. (A, τA) is
normal implies NτA

(F1) ∧ NτA
(F2) does not exist, and since Nτ (M) ≤ NτA

(M) for
any subset M ⊆ X, then there are f, g ∈ LX such that Nτ (F1)(f) ∧ Nτ (F2)(g) >

sup(f ∧ g) in (X, τ). Hence,

∧

x∈C

intτf(x) ∧
∧

y∈B

intτg(y) ≥
∧

x∈F1

intτf(x) ∧
∧

y∈F2

intτg(y) > sup(f ∧ g),

which means that Nτ (B)∧Nτ (C) does not exist, and therefore (X, τ) is a completely
normal space. 2

From Theorem 4.1 and (2) in Proposition 2.1, we have the following result.

Corollary 4.1 If (X, τ) is a GT1-space, then the following are equivalent.

(1) (X, τ) is a GT5-space.

(2) Every subspace (A, τA) is a GT4-space.

(3) Every open subspace (A, τA) is a GT4-space.

In the sequel, it will be shown that the L-metric space (X, τ%) in sense of Gähler,
which had been introduced in [12], is an example for our GT5-spaces, where τ% is
the stratified L-topology generated by the L-metric % on X. To prove this result,
we need the following proposition.
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Proposition 4.2 [7] Any L-metric space (X, τ%) is a GT4-space.

Proposition 4.3 Any L-metric space (X, τ%) is a GT5-space.

Proof. Let F, G be two separated subsets of (X, τ%). Since any two separated sets
are disjoint and from Proposition 4.2, in which the proof does not depend on that
the two sets are closed, we get that N (F ) ∧ N (G) does not exist. Hence, (X, τ) is
a GT5-space. 2

Example 4.3 From Proposition 4.3, we get that the L-metric space (X, %) is an
example for our notion of GT5-space, and thus from (1) in Proposition 2.1 and from
Propositions 3.1, 3.2 and 4.1, we get that it is also an example of our GTi-spaces,
i = 0, 1, 2, 21

2
, 3, 31

2
, 4.

Proposition 4.4 [3] A topological space (X, T ) is T1-space if and only if the induced
L-topological space (X, ω(T )) is a GT1-space.

Here we show that our notion of GT5-spaces is an extension with respect to the
functor ω in sense of Lowen ([17]).

Proposition 4.5 A topological space (X, T ) is a T5-space if and only if the induced
L- topological space (X, ω(T )) is a GT5-space.

Proof. From Proposition 4.4, we get (X, T ) is a T1-space if and only if (X, ω(T ))
is a GT1-space. If (X, T ) is completely normal and A, B are separated sets in
(X, ω(T )), then A, B are separated in (X, T ) and hence there are OA,OB ∈ T

such that OA ∩ OB = ∅. Hence, there are f = χOA
∈ LX , g = χOB

∈ LX for which

N (A)(f) ∧N (B)(g) =
∧

x∈A

intω(T )f(x) ∧
∧

y∈B

intω(T )g(y) = 1 > 0 = sup(f ∧ g).

Thus N (A)∧N (B) does not exist, and then (X, ω(T )) is a completely normal space.

Conversely, let (X, ω(T )) be a completely normal space and A, B are separated
sets in (X, T ). Then A, B are separated sets in (X, ω(T )) and there are f, g ∈ LX

for which
∧

x∈A
intω(T )f(x) ∧

∧
y∈B

intω(T )g(y) > sup(f ∧ g). Since intω(T )f ∈ ω(T )

and intω(T )f(x) > sup(f ∧ g) for each x ∈ A, then taking α = sup(f ∧ g), we
get A ⊆ sα(intω(T )f) and sα(intω(T )f) ∈ T . Similarly, we get B ⊆ sα(intω(T )g)
and sα(intω(T )g) ∈ T . Hence, there are neighborhoods OA = sα(intω(T )f) and
OB = sα(intω(T )g) of A and B, respectively, and moreover we get OA ∩ OB =
sα(intω(T )f) ∩ sα(intω(T )g) = ∅. Thus, (X, T ) is a completely normal space. 2

The following proposition shows that the finer L-topological space of a GT5-space
is also a GT5-space.
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Proposition 4.6 [3] Let (X, τ) be a GT1-space and let σ be an L-topology on X

finer than τ . Then (X, σ) is also a GT1-space.

Proposition 4.7 [4] Let (X, τ) be a GT4-space and let σ be an L-topology on X

finer than τ . Then (X, σ) is also a GT4-space.

Proposition 4.8 Let (X, τ) be a GT5-space and let σ be an L-topology on X finer
than τ . Then (X, σ) is also a GT5-space.

Proof. From Proposition 4.6, we get that (X, σ) is a GT1-space. Let A ⊆ X. Then,
from Corollary 4.1, (X, τ) is GT5-space implies that (A, τA) is a GT4-space. Since
τA ⊆ σA, then from Proposition 4.7 we have (A, σA) is a GT4-space. Hence, from
Corollary 4.1 again, (X, σ) is a GT5-space. 2

Initial GT5-spaces. In the following we shall show that the initial L-topology
τ =

∨
i∈I

f−1
i (τi) of a family (τi)i∈I of GT5-topologies with respect to (fi)i∈I fulfills the

following results.

Proposition 4.9 [3] Let (Xi, τi) be a GT1-space for all i ∈ I and let fi : X → Xi

be an injective mapping for some i ∈ I. Then the initial L-topological space (X, τ)
is also GT1.

Consider the case of I as a singleton.

Proposition 4.10 Let (Y, σ) be a GT5-space and let f : X → Y be an injective
mapping. Then the initial L-topological space (X, τ = f−1(σ)) is also GT5.

Proof. Let Nτ (F ) Nσ(G) be the L-neighborhood filters at subsets F and G of X

and Y with respect to τ and σ, respectively. If A, B be two separated subsets of
X, then from that f is injective, it follows f(A) ∩ clσ(f(B)) ⊆ f(A) ∩ f(clτB) = ∅
and f(B)∩ clσ(f(A)) ⊆ f(B)∩ f(clτA) = ∅. That is, f(A) and f(B) are separated
sets in (Y, σ) and thus Nσ(f(A))∧Nσ(f(B)) does not exist, which means that there
exist g, h ∈ LY such that

∧

x∈A

(intσg)(f(x)) ∧
∧

y∈B

(intσh)(f(y)) > sup(g ∧ h),

which means that
∧

x∈A

((intσg) ◦ f)(x) ∧
∧

y∈B

((intσh) ◦ f)(y) > sup((g ◦ f) ∧ (h ◦ f)).

Because of that f : (X, τ = f−1(σ)) → (Y, σ) is L-continuous it follows (intσg) ◦ f ≤
intτ (g ◦ f) for all g ∈ LY and thus we have

∧

x∈A

(intτ (g ◦ f))(x) ∧
∧

y∈B

(intτ (h ◦ f))(y) > sup((g ◦ f) ∧ (h ◦ f)).
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Thus there exist k = g ◦ f, l = h ◦ f ∈ LX such that

∧

x∈A

(intτk)(x) ∧
∧

y∈B

(intτ l)(y) > sup(k ∧ l).

Hence, Nτ (A) ∧ Nτ (B) does not exist, and thus (X, τ = f−1(σ)) is a completely
normal space and it is also, from Proposition 4.9, a GT1-space. Therefore, it is a
GT5-space. 2

Now consider the case of I be any class.

Proposition 4.11 For all i ∈ I, let (Xi, τi) be a GT5-space and fi : X → Xi

a mapping of X into Xi which are injective for some i ∈ I. Then the initial L-
topological space (X, τ) is also GT5.

Proof. By a similar proof to what we have done in Proposition 4.10. 2

From Propositions 4.10 and 4.11, we get the following result.

Corollary 4.2 The L- topological subspaces and the L-topological product spaces
of GT5-spaces are also GT5-spaces.

Final GT5-spaces. Now we are going to show that the final L-topological space
(X, τ =

∧
i∈I

fi(τi)) of a family ((Xi, τi))i∈I of GT5-spaces is also a GT5-space.

Proposition 4.12 [3] Let I be any class and (Xi, τi) be a GT1-space for all i ∈ I

and fi : Xi → X a surjective L-open mapping for some i ∈ I. Then the final
L-topological space (X, τ) is also GT1.

Proposition 4.13 If (X, τ) is a GT5-space and f : X → Y a surjective L-open
mapping, then the final L-topological space (Y, σ = f(τ)) is also GT5.

Proof. Let F, G be separated subsets of Y . Since f is surjective and continuous,
then f−1(F ), f−1(G) are also separated closed subsets of X. From that (X, τ) is a
completely normal space, it follows Nτ (f

−1(F )) ∧ Nτ (f
−1(G)) does not exist, that

is, there are g, h ∈ LX such that

∧

z∈f−1(F )

(intτg)(z) ∧
∧

w∈f−1(G)

(intτh)(w) > sup(g ∧ h),

which means

∧

x∈F

(intτg)(f−1(x)) ∧
∧

y∈G

(intτh)(f−1(y)) > sup(g ∧ h),
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and this means

∧

x∈F

(f(intτg))(x) ∧
∧

y∈G

(f(intτh))(y) > sup(g ∧ h).

Since f is L-open, it follows f(intτg) ≤ intσ(f(g)) for all g ∈ LX and therefore

∧

x∈F

(intσf(g))(x) ∧
∧

y∈G

(intσf(h))(y) > sup(f(g) ∧ f(h)).

Hence, Nσ(F )∧Nσ(G) does not exist, and thus the final L-topological space (Y, σ =
f(τ)) is completely normal and it is also from Proposition 4.12, a GT1-space, and
therefore it is GT5-space. 2

Proposition 4.14 Let I be any class and (Xi, τi) be a GT5-space for all i ∈ I

and fi : Xi → X a surjective L-open mapping for some i ∈ I. Then the final
L-topological space (X, τ) is also GT5.

Proof. By means of Proposition 4.12, and by a similar way to the proof of Propo-
sition 4.13, the proof will come easily. 2

Corollary 4.3 The L-topological sum spaces and the L-topological quotient spaces
of GT5-spaces are also GT5-spaces.

5. GT6-spaces

In this section we introduce the GT6-spaces and make a similar study to our studies
on the notions of GT2 1

2
-spaces and GT5-spaces. The GT6-spaces are defined, using

the L- unit interval IL with the L-topology = defined by Gähler in [12], as follows.

Definition 5.1 An L-topological space (X, τ) is called perfectly normal if for all
F, G disjoint closed sets in X, there is an L-continuous mapping f : (X, τ) → (IL,=)
such that f−1(0) = F and f−1(1) = G.

Definition 5.2 An L-topological space (X, τ) is called GT6 if it is GT1 and perfectly
normal.

An L-topological space (X, τ) is called a GT6-space ( a perfectly normal space) if it
fulfills the axiom of being GT6 (perfectly normal).

Definition 5.3 A subset A of an L-topological space (X, τ) is called a Gδ-set (Fσ-
set) if it is a countable intersection (union) of open (closed) sets.
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The complement of an Fσ-set is a Gδ-set and vice versa.

Definition 5.4 A subset A of an L-topological space (X, τ) is called functionally
closed if A = f−1(0) for some L-continuous function f : (X, τ) → (IL,=). The
complement of a functionally closed set is called functionally open.

Let f and g be L-sets in X. Then a function h : X → IL is said to separate f and
g if 0 ≤ h(x) ≤ 1 for all x ∈ X, x1 ≤ f implies h(x) = 1 and y1 ≤ g implies h(y) = 0.
Moreover, if Φ is a family of such functions on X, then the sets f, g ∈ LX are called
Φ-separated or Φ-separable. That is, there exists a function h ∈ Φ separating them
([7]).

Lemma 5.1 [7] Urysohn’s Lemma Let (X, τ) be an L-topological space, and let
Φ be the family of all continuous functions f : (X, τ) → (IL,=). Then (X, τ) is
normal if and only if for all F, G ⊆ X with F, G disjoint closed sets in X, there
exists a function f ∈ Φ which separates χF and χG.

Using Lemma 5.1, we shall prove the following result.

Lemma 5.2 Let A be a closed (open) subset of a normal space (X, τ). Then A is
a Gδ-set (Fσ-set) if and only if A is a functionally closed (open) set.

Proof. Let A be a closed Gδ-set in (X, τ), then A′ is an Fσ-set, that is, A′ =⋃

n∈N
Fn, Fn ∈ τ ′ for each positive integer n ∈ N. By Urysohn’s Lemma, there

exists a continuous function fn : (X, τ) → (I, U), where (I, U) is (IL,=) in the crisp
case, such that fn(A) = 0 and fn(Fn) = 1 for all n ∈ N. Set g(x) = fn

2n . Then
g : (X, τ) → (I, U) is continuous, and for each x ∈ A we get g(x) = 0 and when

x 6∈ A, there exists an index n0 such that x ∈ Fn0 , and then g(x) ≥
fn0 (x)

2n0
= 1

2n0
> 0,

that is, g−1(0) = A. Taking the continuous function ∼: (I, U) → (IL,=) defined by
∼ (i) = i for all i ∈ I, we get that (∼ ◦g) : (X, τ) → (IL,=) is L- continuous and
(∼ ◦g)−1(0) = g−1(0) = A. Thus A is functionally closed.

Conversely; suppose that there exists a continuous function f : (X, τ) → (IL,=)
such that f−1(0) = A where A ∈ τ ′. Since the element χ0 : IL → L, which has value
1 at 0 and 0 otherwise, is a closed Gδ-set in (IL,=), then A = f−1(0) is a closed
Gδ-set in (X, τ).

Taking the complements, we can show that A is an Fσ-set if and only if A is a
functionally open set. 2

Remark 5.1 Let F, G be two disjoint closed sets in (X, τ) and let f : (X, τ) →
(IL,=) be an L-continuous mapping. Then we have

f−1(0) = F and f−1(1) = G implies f(F ) = 0 and f(G) = 1.
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That is, in general, (X, τ) is a GT6-space implies that (X, τ) is a GT4-space. More-
over, if f is injective, we get that

f−1(0) = F and f−1(1) = G ⇐⇒ f(F ) = 0 and f(G) = 1.

In the next theorem, we introduce an equivalent definition for our GT6-spaces.

Theorem 5.1 The following are equivalent.

(1) (X, τ) is a GT6-space.

(2) (X, τ) is a GT4-space and every open set is an Fσ-set.

(3) (X, τ) is a GT4-space and every closed set is a Gδ-set.

Proof. (1) ⇒ (2): Since for any disjoint closed subsets F, G of X, there exists an
L-continuous function f : (X, τ) → (IL,=) such that f−1(0) = F and f−1(1) = G,
then from Remark 5.1 we have f(F ) = 0 and f(G) = 1. Hence, by Lemma 5.1,
(X, τ) is a GT4-space. Now, let A ∈ τ , then for A′ ∈ τ ′ we get that f−1(0) = A′ and
then A′ is functionally closed. Hence, from Lemma 5.2, we get that A′ is a Gδ-set
and thus A is an Fσ-set.

(2) ⇒ (3): Obvious.

(3) ⇒ (1): If F, G are two disjoint closed sets in X, then F =
⋂

n∈N
An where each

An is open and also G =
⋂

n∈N
Bn where each Bn is open. Since (X, τ) is a GT4-space,

then from Urysohn’s Lemma we have continuous functions fn, gn : (X, τ) → (I, U)
such that fn(F ) = 0, fn(A′n) = 1 and gn(G) = 0, gn(B′

n) = 1 for all n ∈ N. Set

fF (x) = fn(x)
2n and fG(x) = gn(x)

2n .

Define f : (X, τ) → (I, U) by f(x) = fF (x)
fF (x)+fG(x)

, which means that

f(x) =
fn(x)

fn(x) + gn(x)
= 1−

gn(x)

fn(x) + gn(x)
.

Then f−1(0) = F and f−1(1) = G and f itself is continuous. Using the continuous
function ∼ : (I, U) → (IL,=) defined by ∼ (i) = i for all i ∈ I, we get that
(∼ ◦f) : (X, τ) → (IL,=) is L- continuous and (∼ ◦f)−1(0) = f−1(0) = F and
(∼ ◦f)−1(1) = f−1(1) = G. Hence, (X, τ) is a GT6-space. 2

Now, we have an example for GT6-spaces.

Example 5.1 Let X = {x, y} with x 6= y and let τ = {0, 1, x1, y1}. Then τ ′ = τ

and then {x} = clτ{x} and {y} = clτ{y}.

Since f : (X, τ) → (IL,=) defined by f(x) = 1 and f(y) = 0 is an L-continuous
mapping, and also it is injective, then from Remark 5.1 we get that f−1(1) = {x}
and f−1(0) = {y}. It is clear that (X, τ) is a GT1-space. Thus, (X, τ) is a GT6-space.
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The following proposition and example show that the class of GT5-spaces is larger
than the class of GT6-spaces.

Proposition 5.1 Every GT6-space is a GT5-space.

Proof. Since (X, τ) is a GT6-space. That is, by Theorem 5.1, (X, τ) is GT4 and
every open set is an Fσ-set. Then for an open set A, and for any two disjoint closed
sets B, C in (X, τ), we have Nτ (B) ∧ Nτ (C) does not exist, and since A =

⋃

n∈N
Fn,

Fn ∈ τ ′, then the disjoint closed subsets F = A∩B and G = A∩C of A are disjoint
closed sets in (A, τA) with

∧

x∈F

intτA
f(x) ∧

∧

y∈G

intτA
g(y) ≥

∧

x∈B

intτf(x) ∧
∧

y∈C

intτg(y) > sup(f ∧ g)

for some f, g ∈ LX , that is,Nτ (F )∧Nτ (G) does not exist and thus NτA
(F )∧NτA

(G)
also does not exist. Hence, the open subspace (A, τA) is GT4 and therefore, (X, τ)
is a GT5-space. 2

We introduce in the following example a GT5-space which is not GT6-space.

Example 5.2 Let X = {x, y, z} where all the elements are distinct, and let

τ = {0, 1, y 1
2
, y1, x 3

4
∨ y 1

2
, x 3

4
∨ y1, y 1

2
∨ z1, x1 ∨ y1, y1 ∨ z1, x 3

4
∨ y 1

2
∨ z1, x 3

4
∨ y1 ∨ z1}.

Then

τ ′ = {0, 1, x 1
4
, x1, z1, x1 ∨ y 1

2
, x 1

4
∨ z1, x 1

4
∨ y 1

2
, x1 ∨ z1, x 1

4
∨ y 1

2
∨ z1, x1 ∨ y 1

2
∨ z1},

and there are only {x}, {z} as disjoint closed sets in (X, τ). Since any mapping
f : (X, τ) → (IL,=) such that f−1(1) = {x} and f−1(0) = {z} is not L-continuous,
then (X, τ) is not perfectly normal and thus it is not a GT6-space.

Now, we prove that (X, τ) is a GT5-space. At first (X, τ) is a GT1-space from
that:

At x 6= y: f = x 3
4
∨ y 1

2
∈ LX , g = y1 ∈ LX implies

N (x)(f) ∧N (y)(g) =
3

4
>

1

2
= sup(f ∧ g),

At y 6= z: f = y1 ∈ LX , g = y 1
2
∨ z1 ∈ LX implies

N (x)(f) ∧N (y)(g) = 1 >
1

2
= sup(f ∧ g),

At x 6= z: f = x1 ∨ y1 ∈ LX , g = y 1
2
∨ z1 ∈ LX implies

N (x)(f) ∧N (y)(g) = 1 >
1

2
= sup(f ∧ g).
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Since
{x} ∩ clτ{y} = {x} ∩X 6= ∅ = {x} ∩ {y} = clτ{x} ∩ {y};

{y} ∩ clτ{z} = {y} ∩ {z} = ∅ 6= X ∩ {z} = clτ{y} ∩ {z};

{x} ∩ clτ{z} = {x} ∩ {z} = ∅ = {x} ∩ {z} = clτ{x} ∩ {z},

then there are only {x} and {z} as two separated sets in (X, τ). As in before,
f = x1 ∨ y1 ∈ LX , g = y 1

2
∨ z1 ∈ LX implies

N (x)(f) ∧N (y)(g) = 1 >
1

2
= sup(f ∧ g)

and thus (X, τ) is a completely normal space. Hence, (X, τ) is a GT5-space and is
not a GT6-space.

Now, we show that our notion of GT6-space is an extension with respect to the
functor ω in sense of Lowen ([17]).

Proposition 5.2 A topological space (X, T ) is T6-space if and only if the induced
L-topological space (X, ω(T )) is a GT6-space.

Proof. By means of Proposition 4.4, we have (X, T ) is T1 equivalent to that
(X, ω(T )) is GT1.

Now, let F, G be two disjoint closed sets in (X, ω(T )). Then F, G are disjoint
closed in (X, T ). Since (X, T ) is perfectly normal, then there exists a continuous
mapping g : (X, T ) → (I, U) such that g−1(1) = F and g−1(0) = G. Since k ∈ ω(T )
implies that sαk ∈ U for some α ∈ L1, and that sα(g−1(k)) = g−1(sαk) ∈ T , which
means that g−1(k) ∈ ω(T ), and hence g : (X, ω(T )) → (I, ω(U)) is L-continuous.

Consider the L-continuous mapping f : (I, ω(U)) → (IL,=), f(α) = α for all
α ∈ I. Then (f ◦ g) : (X, ω(T )) → (IL,=) is L-continuous such that

(f ◦ g)−1(1) = g−1(f−1(1)) = g−1(1) = F

and
(f ◦ g)−1(0) = g−1(f−1(0)) = g−1(0) = G.

That is (X, ω(T )) is a GT6-space.

Conversely, let F, G be two disjoint closed sets in (X, T ). Then F, G are disjoint
closed in (X, ω(T )). Since (X, ω(T )) is perfectly normal, then there exists an L-
continuous mapping g : (X, ω(T )) → (IL,=) such that g−1(1) = F and g−1(0) = G.
Since we deal with ordinary subsets, then from the identifications T with ω(T )
and U with = in the crisp case, we get that there exists a continuous mapping
f : (X, T ) → (I, U) such that f−1(1) = F and g−1(0) = G. Hence, (X, T ) is a
T6-space. 2

The following proposition shows that the finer L-topological space of a GT6-space
is also a GT6-space.
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Proposition 5.3 Let (X, τ) be a GT6-space and let σ be an L- topology on X finer
than τ . Then (X, σ) is also a GT6-space.

Proof. From Proposition 4.6, we get (X, σ) is a GT1-space. Let F, G be two
disjoint closed sets in (X, σ). Then τ ⊆ σ implies that F, G are disjoint closed in
(X, τ) and hence there exists an L-continuous mapping f : (X, τ) → (IL,=) such
that f−1(1) = F and f−1(0) = G. Also, τ ⊆ σ implies that f : (X, σ) → (IL,=) is
L-continuous, and therefore (X, σ) is a GT6-space. 2

Initial GT6-spaces. The initial L-topology τ =
∨
i∈I

f−1
i (τi) of a family (τi)i∈I of

GT6-topologies with respect to (fi)i∈I fulfills the following results.

At first consider the case of one mapping.

Proposition 5.4 Let f : X → Y be an injective mapping and (Y, σ) be a GT6-space.
Then the initial L-topological space (X, τ = f−1(σ)) is GT6.

Proof. Let F, G be disjoint closed sets in (X, τ), then from that f is injective
it follows f(F ), f(G) are disjoint closed sets in (Y, σ) and thus there exists an L-
continuous mapping g : (Y, σ) → (IL,=) such that g−1(0) = f(F ) and g−1(1) =
f(G). Hence, (g ◦ f)−1(0) = f−1(g−1(0)) = f−1(f(F )) = F and (g ◦ f)−1(1) =
f−1(g−1(1)) = f−1(f(G)) = G. That is, there is a continuous mapping h = g ◦ f :
(X, τ) → (IL,=) such that h−1(0) = F and h−1(1) = G. Thus, (X, τ) is a perfectly
normal space and it is also, from Proposition 4.9, a GT1-space. Hence, (X, τ) is a
GT6-space. 2

Assume now that a family ((Xi, τi))i∈I of GT6-spaces and a family (fi)i∈I of
mappings fi : X → Xi which are injective for some i ∈ I are given, where I may be
any class.

Proposition 5.5 For the family ((Xi, τi))i∈I of GT6-spaces, we have the initial
L-topological space (X, τ =

∨
i∈I

f−1
i (τi)) is GT6.

Proof. We have also here, as in the previous proposition, for disjoint closed sets
F, G in (X, τ), there is a continuous mapping h = gi ◦fi : (X, τ) → (IL,=) such that
h−1(0) = F and h−1(1) = G, where gi is an L-continuous mapping of (Xi, τi) into
(IL,=) such that g−1

i (0) = fi(F ) and g−1
i (1) = fi(G). Thus, (X, τ) is a perfectly

normal space and it is also, from Proposition 4.9, a GT1-space. Hence, (X, τ) is a
GT6-space. 2

From Propositions 5.4 and 5.5, we have the following result.

Corollary 5.1 The L-topological subspaces and the L-topological product spaces of
a family of GT6-spaces are GT6-spaces.
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Final GT6-spaces. The final L-topology τ =
∧
i∈I

fi(τi) of a family (τi)i∈I of

GT6-topologies with respect to (fi)i∈I fulfills the following.

In case of one mapping we get this result.

Proposition 5.6 Let f : X → Y be a surjective L-open mapping and (X, τ) be a
GT6-space. Then the final L-topological space (Y, σ = f(τ)) is GT6.

Proof. Let F, G be disjoint closed sets in (Y, σ = f(τ)), then from that f is
surjective, it follows that there exists A, B two disjoint closed sets in X such that
A = f−1(F ) and B = f−1(G). Since (X, τ) is a GT6-space, then there exists
an L-continuous mapping g : (X, τ) → (IL,=) such that g−1(0) = A = f−1(F )
and g−1(1) = B = f−1(G). Since f is L-open implies f−1 is L-continuous, then
g ◦ f−1 : (Y, σ) → (IL,=) is an L-continuous mapping such that (g ◦ f−1)−1(0) =
f(g−1(0)) = f(A)) = F and (g ◦f−1)−1(1) = f(g−1(1)) = f(B) = G. Thus, (Y, σ) is
a perfectly normal space and it is also, from Proposition 4.12, a GT1-space. Hence,
(Y, σ) is a GT6-space. 2

Proposition 5.7 Let I be any class and ((Xi, τi))i∈I a family of GT6-spaces and
(fi)i∈I a family of mappings fi : Xi → X which are surjective L-open for some
i ∈ I. Then the final L-topological space (X, τ =

∧
i∈I

fi(τi)) is GT6.

Proof. Similarly, as in the proof of Proposition 5.6. 2

Now, we have the following result.

Corollary 5.2 The L-topological quotient spaces and the L-topological sum spaces
of a family of GT6-spaces are GT6-spaces.
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[1] J. Adámek, H. Herrlich and G. Strecker; Abstract and Concrete Categories, John

Wiley & Sons, Inc. New York et al., 1990.

[2] F. Bayoumi and I. Ibedou; On GTi-spaces, J. of Inst. of Math. and Comp. Sci., Vol.

14, No. 3, (2001) 187 - 199.

[3] F. Bayoumi and I. Ibedou; Ti-spaces, I, Journal of the Egyptian Mathematical

Society, www.etms-web.org, Vol. 10 (2) (2002) 179 - 199.

[4] F. Bayoumi and I. Ibedou; Ti-spaces, II, Journal of the Egyptian Mathematical

Society, www.etms-web.org, Vol. 10 (2) (2002) 201 - 215.

21



[5] F. Bayoumi; On initial and final fuzzy uniform structures, Fuzzy Sets and Systems,

Vol. 133, Issue 3 (2003) 99 - 319.

[6] F. Bayoumi and I. Ibedou; The relation between the GTi-spaces and fuzzy proximity

spaces, G-compact spaces, fuzzy uniform spaces, The Journal of Chaos, Solitons and

Fractals, 20 (2004) 955 - 966.

[7] F. Bayoumi, I. Ibedou; GT3 1
2
-spaces, I, Journal of the Egyptian Mathematical So-

ciety, www.etms-web.org, Vol.14(2) (2006) 243 - 264.

[8] F. Bayoumi, I. Ibedou; GT3 1
2
-spaces, II, Journal of the Egyptian Mathematical

Society, www.etms-web.org, Vol.14(2) (2006) 265 - 282.

[9] C. L. Chang; Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968) 182 - 190.
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