A New Setting of fuzzy separation axioms

Ismail Ibedou*

Department of Mathematics, Faculty of Science, Benha University, Benha, (13518), Egypt

Current Address: Community College in AL-QUWAY'IYAH, Dept. of Computer Science, King Saud University, KSA Web site: http://faculty.ksu.edu.sa/Ismail_Ibedou, E-mail: iibedou@ksu.edu.sa

Abstract

In this paper, we introduce the L-separation axioms $GT_{2\frac{1}{2}}$ and GT_5 using the notion of Lneighborhood filter defined by Gähler in 1995. We define also the axiom GT_6 depending on the notion of L-numbers presented by Gähler in 1994. Denote by GT_i -space for the L-topological space which is GT_i , $i = 2\frac{1}{2}, 5, 6$. The GT_i -spaces, $i = 0, 1, 2, 3, 3\frac{1}{2}, 4$ had been introduced and studied by the author in 2001 - 2004 in separate six papers. All the axioms GT_i are based only on usual points and ordinary sets and they are the usual ones in the classical case $L = \{0, 1\}$. It is shown that the axioms GT_i , $i = 2\frac{1}{2}, 5, 6$ fulfill many properties analogous to the usual axioms and moreover, the initial and the final of GT_i -spaces are also GT_i -spaces, $i = 2\frac{1}{2}, 5, 6$.

Keywords: L-neighborhood filters; L-real numbers; GT_i -spaces; $GT_{2\frac{1}{2}}$ -spaces; Completely normal spaces; GT_5 -spaces; Perfectly normal spaces; GT_6 -spaces.

1. Introduction

We had introduced in [2, 3, 4, 6, 7, 8] the *L*-separation axioms GT_i , $i = 0, 1, 2, 3, 3\frac{1}{2}, 4$ using the *L*-neighborhood filters at a point to define the axioms GT_i , i = 0, 1, 2 and using the *L*-neighborhood filters at a point and at a set to define the axioms GT_i , i = 3, 4, and by using the *L*-real numbers, defined by Gähler in [12], to define the axiom $GT_{3\frac{1}{2}}$. We denote by a GT_i -space for the *L*- topological space which is GT_i , $i = 0, 1, 2, 3, 3\frac{1}{2}, 4$.

In this paper, we define the $GT_{2\frac{1}{2}}$ -spaces and the GT_5 -spaces depending on the *L*-neighborhood filters at a point and at a set, respectively. The GT_5 -space is defined as a completely normal GT_1 -space.

We introduce also the GT_6 -spaces using the *L*-real numbers. The set of all *L*-real numbers is called *L*-real line and is denoted by \mathbf{R}_L , where *L* is a complete chain. Here, using the *L*-topological space (I_L, \Im) , where I = [0, 1] is the closed unit

^{*}E-mail: ismail_ibedou@yahoo.com

interval and \Im is the *L*-topology on I_L , a notion of perfectly normal *L*-topological spaces is introduced. The GT_6 -spaces are the *L*-topological spaces which are GT_1 and perfectly normal in our sense.

These *L*-separation axioms are extensions with respect to the functor ω in sense of Lowen ([17]), this means that an induced *L*-topological space $(X, \omega(T))$ is GT_i if and only if the underlying topological space (X, T) is T_i for all $i = 2\frac{1}{2}, 5, 6$. Moreover, the implications between the axioms $GT_{2\frac{1}{2}}$, GT_5 and GT_6 and the previous axioms GT_i , i = 2, 3, 4 goes well. Counterexamples are given to assure these implications.

We show also that the initial and final *L*-topological spaces of a family of GT_i -spaces, $i = 2\frac{1}{2}, 5, 6$, are GT_i . Therefore the *L*-topological product spaces, subspaces, sum spaces and quotient spaces of GT_i -spaces, $i = 2\frac{1}{2}, 5, 6$, are GT_i -spaces.

2. Preliminaries

Let L be a complete chain with different least and greatest elements 0 and 1, respectively. Assume that an order-reversing involution $\alpha \mapsto \alpha'$ of L is fixed. Denote by L^X the set of all L-subsets of a non-empty set X. For each L-set $f \in L^X$, let f'denote the complement of f, defined by f'(x) = f(x)' for all $x \in X$.

In the following the *L*-topology τ on a set *X* in sense of ([9, 15]) will be used. Denote by $\operatorname{int}_{\tau}$ and cl_{τ} for the interior and the closure operators with respect to τ . Let (X, τ) and (Y, σ) be two *L*-topological spaces. Then the mapping $f : (X, \tau) \to (Y, \sigma)$ is called *L*-continuous provided $\operatorname{int}_{\sigma} g \circ f \leq \operatorname{int}_{\tau}(g \circ f)$ for all $g \in L^Y$. If *T* is an ordinary topology on *X*, then the *induced L*-topology ([17]) on *X* is given by $\omega(T) = \{f \in L^X \mid s_{\alpha} f \in T \text{ for all } \alpha \in L_1\}$, where $s_{\alpha} f = \{x \in X \mid \alpha < f(x)\}$.

L-filters. By an L-filter on X ([11, 13]) is meant a mapping $\mathcal{M} : L^X \to L$ such that: $\mathcal{M}(\overline{\alpha}) \leq \alpha$ holds for all $\alpha \in L$ and $\mathcal{M}(\overline{1}) = 1$, and $\mathcal{M}(f \wedge g) = \mathcal{M}(f) \wedge \mathcal{M}(g)$ for all $f, g \in L^X$. An L-filter \mathcal{M} is called homogeneous if $\mathcal{M}(\overline{\alpha}) = \alpha$ for all $\alpha \in L$. For each $x \in X$, the mapping $\dot{x} : L^X \to L$ defined by $\dot{x}(f) = f(x)$ for all $f \in L^X$ is a homogeneous L- filter on X. If \mathcal{M} and \mathcal{N} are L-filters on X, \mathcal{M} is said to be finer than \mathcal{N} , denoted by $\mathcal{M} \leq \mathcal{N}$, provided $\mathcal{M}(f) \geq \mathcal{N}(f)$ holds for all $f \in L^X$. By $\mathcal{M} \not\leq \mathcal{N}$ we denote that \mathcal{M} is not finer than \mathcal{N} .

A closure of an *L*-filter \mathcal{M} on an *L*-topological space (X, τ) is the *L*-filter cl \mathcal{M} on *X* defined by ([14]):

$$\operatorname{cl} \mathcal{M}(f) = \bigvee_{cl_{\tau}g \leq f} \mathcal{M}(g).$$

For all *L*-filters \mathcal{L} and \mathcal{M} on X we have ([14]):

$$\mathcal{L} \leq \mathcal{M} \text{ implies } \operatorname{cl} \mathcal{L} \leq \operatorname{cl} \mathcal{M}$$
 (2.1)

and

$$\mathcal{M} \le \operatorname{cl} \mathcal{M} \tag{2.2}$$

For each non-empty set A of L-filters on X, the supremum $\bigvee_{\mathcal{M}\in A} \mathcal{M}$ with respect to the finer relation of L-filters exists and we have

$$(\bigvee_{\mathcal{M}\in A}\mathcal{M})(f) = \bigwedge_{\mathcal{M}\in A}\mathcal{M}(f)$$

for all $f \in L^X$ ([11]). The infimum $\bigwedge_{\mathcal{M} \in A} \mathcal{M}$ doesn't exist in general. The infimum $\bigwedge_{\mathcal{M} \in A} \mathcal{M}$ of A exists if and only if for each non-empty finite subset $\{\mathcal{M}_1, \ldots, \mathcal{M}_n\}$ of A we have $\mathcal{M}_1(f_1) \wedge \cdots \wedge \mathcal{M}_n(f_n) \leq \sup(f_1 \wedge \cdots \wedge f_n)$ for all $f_1, \ldots, f_n \in L^X$. If the infimum of A exists, then for each $f \in L^X$ and n as a positive integer we have ([11]):

$$(\bigwedge_{\mathcal{M}\in A}\mathcal{M})(f) = \bigvee_{\substack{f_1\wedge\cdots\wedge f_n\leq f,\\\mathcal{M}_1,\dots,\mathcal{M}_n\in A}} (\mathcal{M}_1(f_1)\wedge\cdots\wedge\mathcal{M}_n(f_n)).$$

If the infimum $\mathcal{L}_1 \wedge \mathcal{L}_2$ and the infimum $\mathcal{M}_1 \wedge \mathcal{M}_2$, of *L*-filters $\mathcal{L}_1, \mathcal{L}_2$ and $\mathcal{M}_1, \mathcal{M}_2$ on *X* exist, respectively, then we have

$$\mathcal{L}_1 \leq \mathcal{M}_1 \text{ and } \mathcal{L}_2 \leq \mathcal{M}_2 \text{ implies } \mathcal{L}_1 \wedge \mathcal{L}_2 \leq \mathcal{M}_1 \wedge \mathcal{M}_2$$
 (2.3)

L-neighborhood filters. For each *L*-topological space (X, τ) and each $x \in X$, the *L*-neighborhood filter of the space (X, τ) at x is an *L*-filter $\mathcal{N}(x) : L^X \to L$ on X defined by $\mathcal{N}(x)(f) = \operatorname{int}_{\tau} f(x)$ for all $f \in L^X$ ([14]). The *L*-neighborhood filter $\mathcal{N}(F)$ at an ordinary subset F of X is the *L*-filter on X defined, by the author in [4], by means of $\mathcal{N}(x), x \in F$ as:

$$\mathcal{N}(F) = \bigvee_{x \in F} \mathcal{N}(x). \tag{2.4}$$

L-real numbers. Gähler defined in [12] the *L*-real numbers as convex, normal, compactly supported and upper semi-continuous *L*-subsets of the set of real numbers **R**. Each real number *a* is identified with the crisp *L*-real number a^{\sim} by $a^{\sim}(\xi) = 1$ whenever $\xi = a$ and $a^{\sim}(\xi) = 0$ otherwise. The set of all *L*-real numbers is called *L*-real line **R**_{*L*}.

By Gähler's L-unit interval ([12]) is meant the set I_L defined by

$$I_L = \{ x \in \mathbf{R}_L^* \mid x \le 1^{\sim} \},\$$

where I = [0, 1] and $\mathbf{R}_L^* = \{x \in \mathbf{R}_L \mid x(0) = 1 \text{ and } 0^{\sim} \leq x\}$. Gähler had showed in [12] that the class

$$\{R_{\delta}|_{I_L} \mid \delta \in I\} \cup \{R^{\delta}|_{I_L} \mid \delta \in I\} \cup \{0^{\sim}|_{I_L}\}$$

is a base for an *L*-topology \Im on I_L , where R^{δ} and R_{δ} are the *L*-sets of \mathbf{R}_L into *L* defined by

$$R_{\delta}(x) = \bigvee_{\alpha > \delta} x(\alpha) \text{ and } R^{\delta}(x) = (\bigvee_{\alpha \ge \delta} x(\alpha))^{\alpha}$$

for all $x \in \mathbf{R}_L$ and $\delta \in \mathbf{R}$, and note that $R_{\delta}|_{I_L}$, $R^{\delta}|_{I_L}$ are the restrictions of R_{δ} , R^{δ} on I_L , respectively.

L-metric spaces. In the sequel will be shown that the *L*-metric space in sense of S. Gähler and W. Gähler, which had been introduced in [10], is an example of our $GT_{3\frac{1}{2}}$ -space. By an *L*-metric on a set X we mean ([10]) a mapping $\varrho: X \times X \longrightarrow \mathbf{R}_L^*$ such that the following conditions are fulfilled:

- (1) $\varrho(x,y) = 0^{\sim}$ if and only if x = y
- (2) $\rho(x,y) = \rho(y,x)$ (symmetry)
- (3) $\varrho(x,y) \le \varrho(x,z) + \varrho(z,y)$ (triangle inequality).

A set X equipped with an L-metric ρ on X is called an L-metric space.

Note that 0^{\sim} denotes the *L*-number which has values 1 at 0 and 0 otherwise.

To each *L*-metric ρ on a set *X* is generated canonically a stratified *L*-topology τ_{ρ} which has $\{\varepsilon \circ \rho_x \mid \varepsilon \in \mathcal{E}, x \in X\}$ as a base, where $\rho_x : X \to \mathbf{R}_L^*$ is the mapping defined by $\rho_x(y) = \rho(x, y)$ and

$$\mathcal{E} = \{ \overline{\alpha} \wedge R^{\delta} |_{\mathbf{R}^*_{T}} \mid \delta > 0, \ \alpha \in L \} \cup \{ \overline{\alpha} \mid \alpha \in L \},$$

here $\overline{\alpha}$ has \mathbf{R}_L^* as domain and $R^{\delta}|_{\mathbf{R}_L^*}$ is the restriction of R^{δ} on \mathbf{R}_L^* .

 GT_i -spaces. In [3, 4, 7] we had defined the *L*-separation axioms GT_i , $i = 0, 1, 2, 3, 3\frac{1}{2}, 4$, and in the following we recall some of these axioms which we need in this paper. An *L*-topological space (X, τ) is called:

- (1) GT_1 if for all $x, y \in X$ with $x \neq y$ we have $\dot{x} \leq \mathcal{N}(y)$ and $\dot{y} \leq \mathcal{N}(x)$.
- (2) GT_2 if for all $x, y \in X$ with $x \neq y$ we have $\mathcal{N}(x) \wedge \mathcal{N}(y)$ does not exist.
- (3) regular if $\mathcal{N}(x) \wedge \mathcal{N}(F)$ does not exist for all $x \in X, F \in P(X)$ with $F = cl_{\tau}F$ and $x \notin F$ (or if $\mathcal{N}(x) = cl \mathcal{N}(x)$ for all $x \in X$).
- (4) GT_3 if it is regular and GT_1 .
- (5) completely regular if for all $x \notin F \in \tau'$, there exists an *L*-continuous mapping $f: (X, \tau) \to (I_L, \mathfrak{F})$ such that $f(x) = \overline{1}$ and $f(y) = \overline{0}$ for all $y \in F$.
- (6) $GT_{3\frac{1}{5}}$ -space (or an L-Tychonoff space) if it is GT_1 and completely regular
- (7) normal if for all $F_1, F_2 \in P(X)$ with $F_1 = cl_{\tau}F_1, F_2 = cl_{\tau}F_2$ and $F_1 \cap F_2 = \emptyset$ we have $\mathcal{N}(F_1) \wedge \mathcal{N}(F_2)$ does not exist.
- (8) GT_4 if it is normal and GT_1 .

Denote by GT_i -space for the L-topological space which is GT_i .

Proposition 2.1 [3, 4]

(1) Every GT_i -space is GT_{i-1} -space for each i = 1, 2, 3, 4, and $GT_{\underline{\mathcal{J}}_{2}^{1}}$ -spaces fulfill the following:

every GT_4 -space is a $GT_{\mathfrak{Z}_{\overline{a}}}$ -space and every $GT_{\mathfrak{Z}_{\overline{a}}}$ -space is a GT_3 -space.

(2) The L-topological subspaces and the L-topological product spaces of a family of GT_i -spaces are GT_i -spaces for each i = 0, 1, 2, 3, 4.

3. $GT_{2\frac{1}{2}}$ -spaces

Now, we shall introduce our notion of $T_{2\frac{1}{2}}$ -spaces in the fuzzy case. It will be called $GT_{2\frac{1}{2}}$ -spaces.

Definition 3.1 An *L*-topological space (X, τ) is said to be $GT_{2\frac{1}{2}}$ if for all $x, y \in X$ with $x \neq y$ we have $\operatorname{cl} \mathcal{N}(x) \wedge \operatorname{cl} \mathcal{N}(y)$ does not exist.

By a $GT_{2\frac{1}{2}}$ -space we mean the *L*-topological space which is $GT_{2\frac{1}{2}}$.

In the following an example of a $GT_{2\frac{1}{2}}$ -space.

Example 3.1 Let $X = \{x, y\}$ in which $x \neq y$ and let $\tau = \{\overline{0}, \overline{1}, x_1, y_1\}$. Then $\{x\} = \operatorname{cl}_{\tau}\{x\}$ and $\{y\} = \operatorname{cl}_{\tau}\{y\}$, and thus

$$\operatorname{cl} \mathcal{N}(x)(x_1) = \bigvee_{\operatorname{cl}_{\tau} g \le x_1} \mathcal{N}(x)(g) = \bigvee_{\operatorname{cl}_{\tau} g \le x_1} \operatorname{int}_{\tau} g(x) \ge \operatorname{int}_{\tau} x_1(x) = 1.$$

Also, $\operatorname{cl} \mathcal{N}(y)(y_1) = 1$. That is, there are $f = x_1 \in L^X$ and $g = y_1 \in L^X$ such that $\operatorname{cl} \mathcal{N}(x)(f) \wedge \operatorname{cl} \mathcal{N}(y)(g) > \sup(f \wedge g)$. Hence, (X, τ) is a $GT_{2\frac{1}{2}}$ -space.

The following proposition states that the implication from $GT_{2\frac{1}{2}}$ -spaces to GT_{2} -spaces goes well.

Proposition 3.1 Every $GT_{2\frac{1}{2}}$ -space is GT_2 -space.

Proof. Since $\mathcal{N}(x) \leq \operatorname{cl} \mathcal{N}(x)$, by means of (2.2), for all $x \in X$, then from (2.3) we get $\mathcal{N}(x) \wedge \mathcal{N}(y) \leq \operatorname{cl} \mathcal{N}(x) \wedge \operatorname{cl} \mathcal{N}(y)$, and therefore $\operatorname{cl} \mathcal{N}(x) \wedge \operatorname{cl} \mathcal{N}(y)$ does not exist implies $\mathcal{N}(x) \wedge \mathcal{N}(y)$ does not exist as well. Thus for all $x \neq y$ in X we have $\mathcal{N}(x) \wedge \mathcal{N}(y)$ does not exist and hence (X, τ) is a GT_2 -space. \Box

The class of GT_2 -spaces is larger than the class of $GT_{2\frac{1}{2}}$ -spaces. In this example we introduce a GT_2 -space which is not $GT_{2\frac{1}{2}}$ -space.

Example 3.2 Let the *L*-topological space (X, τ) be, in the crisp case, the space so called Irrational Slope Topological Space. That is, X is the closed upper half plane $\{(x, y) \mid y \geq 0\}$ in \mathbf{Q}^2 and some irrational number θ is fixed, and τ is defined as follows: for each point $(x, y) \in X$, the τ -neighborhoods will be $\{(x, y)\} \cup B_{\epsilon}(\frac{x+y}{\theta}) \cup B_{\epsilon}(\frac{x-y}{\theta})$, where $B_{\epsilon}(\eta) = \{r \in Q \mid \eta - \epsilon < r < \eta + \epsilon\}$ for all $\eta \in \mathbf{R}$ and for all $\epsilon > 0$. Each τ -neighborhood of (x, y) consists of (x, y) itself plus two open intervals centered at the two irrational points $\frac{x+y}{\theta}$ and $\frac{x-y}{\theta}$, and the lines joining these points to (x, y) have slope $\pm \theta$. Hence, we get that (X, τ) is a GT_2 -space and it is not a $GT_2\frac{1}{2}$ -space.

The following proposition and example show that the class of $GT_{2\frac{1}{2}}$ -spaces is larger than the class of GT_3 -spaces.

Proposition 3.2 Every GT_3 -space is a $GT_{2\frac{1}{2}}$ -space.

Proof. Let $x \neq y$ in X and (X, τ) a GT_3 -space. Then (X, τ) is a GT_1 -space and $\operatorname{cl} \mathcal{N}(x) = \mathcal{N}(x)$ for all $x \in X$. Hence, $x \notin \{y\} \in \tau'$ and $\operatorname{cl} \mathcal{N}(x) \wedge \operatorname{cl} \mathcal{N}(y) = \mathcal{N}(x) \wedge \mathcal{N}(y)$ does not exist, and thus (X, τ) is a $GT_{2\frac{1}{2}}$ -space. \Box

In this example we introduce a $GT_{2\frac{1}{5}}$ -space which is not GT_3 -space.

Example 3.3 Let the *L*-topological space (X, τ) be, in the crisp case, the space so called Half Disc Topological Space. That is, if $P = \{(x, y) \in \mathbb{R}^2 \mid y > 0\}$ is the open upper half plane with the natural topology *T* on it, and *S* denote the real-axis. Then $X = P \cup S$ and τ is generated on *X* by adding to the elements of *T* all sets of the form $\{x\} \cup (P \cap U)$, where $x \in S$ and *U* is the Euclidean usual neighborhood of (x, 0) in the plane \mathbb{R}^2 . That is, τ is generated by a basis consisting of two types of neighborhoods: all open discs contained in *P* for all $(x, y) \in P$, and open half discs centered at $\{z\}$ together with $\{z\}$ itself for all $z \in S$. Hence, we get that (X, τ) is a $GT_{2\frac{1}{2}}$ -space and it is not a GT_3 -space.

Here, we show that the $GT_{2\frac{1}{2}}$ -space is an extension with respect to the functor ω in sense of Lowen ([17]).

Proposition 3.3 A topological space (X,T) is a $T_{\mathcal{Z}_{\frac{1}{2}}}$ -space if and only if the induced L-topological space $(X, \omega(T))$ is a $GT_{\mathcal{Z}_{\frac{1}{2}}}$ -space.

Proof. If (X,T) is a $T_{2\frac{1}{2}}$ -space and $x \neq y$ in X, then there are $\mathcal{O}_x, \mathcal{O}_y \in T$ such that $\overline{\mathcal{O}_x} \cap \overline{\mathcal{O}_y} = \emptyset$. Taking $f = \chi_{\overline{\mathcal{O}_x}}, g = \chi_{\overline{\mathcal{O}_y}}$ we get that $\sup(f \wedge g) = 0$, and from that $\mathrm{cl}_{\omega(T)}f = f$ and $\mathrm{cl}_{\omega(T)}g = g$ we get that

$$cl\mathcal{N}(x)(f) \wedge cl\mathcal{N}(y)(g) = \bigvee_{\substack{cl_{\omega(T)}h \leq f \\ int_{\omega(T)}h(x) \wedge int_{\omega(T)}k \leq g \\ int_{\omega(T)}f(x) \wedge int_{\omega(T)}g(y) = 1.} int_{\omega(T)}k(y)$$

Hence, $\operatorname{cl} \mathcal{N}(x) \wedge \operatorname{cl} \mathcal{N}(y)$ does not exist. That is, $(X, \omega(T))$ is a $GT_{2\frac{1}{2}}$ -space.

Conversely; if $(X, \omega(T))$ is a $GT_{2\frac{1}{2}}$ -space, then for $x \neq y$ in X, there exist $f, g \in L^X$ such that $\operatorname{cl} \mathcal{N}(x)(f) \wedge \operatorname{cl} \mathcal{N}(y)(g) > \sup(f \wedge g)$, that is,

$$\bigvee_{\mathrm{cl}_{\omega(T)}h\leq f} \mathrm{int}_{\omega(T)}h(x) \wedge \bigvee_{\mathrm{cl}_{\omega(T)}k\leq g} \mathrm{int}_{\omega(T)}k(y) > \sup(f \wedge g),$$

which means that there exist $\lambda, \mu \in \omega(T)'$ such that $\operatorname{int}_{\omega(T)}\lambda(x) \wedge \operatorname{int}_{\omega(T)}\mu(y) > \sup(f \wedge g)$. Taking $s_{\alpha}\lambda$ and $s_{\alpha}\mu$ for all $\alpha \in L_1$, we get two disjoint closed neighborhoods of x and y, respectively. Hence, (X,T) is a $T_{2\frac{1}{2}}$ -space. \Box

The following proposition shows that the finer L-topological space of a $GT_{2\frac{1}{2}}$ -space is also a $GT_{2\frac{1}{2}}$ -space.

Proposition 3.4 Let (X, τ) be a $GT_{2\frac{1}{2}}$ -space and let σ be an L-topology on X finer than τ . Then (X, σ) is also a $GT_{2\frac{1}{2}}$ -space.

Proof. Let $\mathcal{N}_{\sigma}(x)$ and $\mathcal{N}_{\tau}(x)$ be the *L*-neighborhood filters at *x* with respect to σ and τ , respectively. Since $\sigma \supseteq \tau$ means that $\mathcal{N}_{\sigma}(x) \leq \mathcal{N}_{\tau}(x)$ holds for all $x \in X$, then (2.1) implies that $\operatorname{cl} \mathcal{N}_{\sigma}(x) \leq \operatorname{cl} \mathcal{N}_{\tau}(x)$ holds for all $x \in X$. Hence, we have from (2.3), $\operatorname{cl} \mathcal{N}_{\sigma}(x) \wedge \operatorname{cl} \mathcal{N}_{\sigma}(y) \leq \operatorname{cl} \mathcal{N}_{\tau}(x) \wedge \operatorname{cl} \mathcal{N}_{\tau}(y)$. Since $\operatorname{cl} \mathcal{N}_{\tau}(x) \wedge \operatorname{cl} \mathcal{N}_{\tau}(y)$ does not exist, then $\operatorname{cl} \mathcal{N}_{\sigma}(x) \wedge \operatorname{cl} \mathcal{N}_{\sigma}(y)$ does not exist, that is, (X, σ) is a $GT_{2\frac{1}{2}}$ -space. \Box

Initial $GT_{2\frac{1}{2}}$ -spaces. Consider a family of *L*-topological spaces $((X_i, \tau_i))_{i \in I}$. The supremum $\bigvee_{i \in I} f_i^{-1}(\tau_i)$ of the family $(f_i^{-1}(\tau_i))_{i \in I}$, where $f_i^{-1}(\tau_i) = \{f_i^{-1}(g) \mid g \in \tau_i\}$ and $f_i : X \to X_i$, and the infimum $\bigwedge_{i \in I} f_i(\tau_i)$ of the family $(f_i(\tau_i))_{i \in I}$, where $f_i(\tau_i) = \{g \in L^X \mid f_i^{-1}(g) \in \tau_i\}$ and $f_i : X_i \to X$ fulfill the following result.

Proposition 3.5 [5, 16] $\bigvee_{i \in I} f_i^{-1}(\tau_i)$ and $\bigwedge_{i \in I} f_i(\tau_i)$ are the initial and the final, in the categorical sense ([1]), of $(\tau_i)_{i \in I}$ with respect to $(f_i)_{i \in I}$, respectively.

In the following we shall show that the initial *L*-topology $\tau = \bigvee_{i \in I} f_i^{-1}(\tau_i)$ of a family $(\tau_i)_{i \in I}$ of $GT_{2\frac{1}{2}}$ -topologies with respect to $(f_i)_{i \in I}$ fulfills the following results.

At first consider the case of one mapping.

Proposition 3.6 Let $f : X \to Y$ be an injective mapping and (Y, σ) be a $GT_{2\frac{1}{2}}$ space. Then the initial L-topological space $(X, \tau = f^{-1}(\sigma))$ is also $GT_{2\frac{1}{2}}$.

Proof. From Proposition 3.5, we have $f: X \to Y$ is *L*-continuous. Since $f: X \to Y$ is injective, then $x \neq y$ in X implies $f(x) \neq f(y)$ in Y and then there are $g, h \in L^Y$

such that $\operatorname{cl} \mathcal{N}(f(x))(g) \wedge \operatorname{cl} \mathcal{N}(f(y))(h) > \sup(g \wedge h)$, that is, $\bigvee_{\substack{\operatorname{cl}_{\sigma}k \leq g \\ \operatorname{cl}_{\sigma}k \leq g}} \operatorname{int}_{\sigma}k(f(x)) \wedge \bigvee_{\substack{\operatorname{cl}_{\sigma}l \leq h \\ \operatorname{int}_{\tau}(k \circ f)}} \operatorname{int}_{\sigma}l(f(y)) > \sup(g \wedge h)$. From that f is L-continuous, it follows $(\operatorname{int}_{\sigma}k) \circ f \leq \operatorname{int}_{\tau}(k \circ f)$ and $(\operatorname{cl}_{\sigma}k) \circ f \geq \operatorname{cl}_{\tau}(k \circ f)$ for all $k \in L^{Y}$, and hence

 $\bigvee_{\operatorname{cl}_{\tau}(k\circ f)\leq (g\circ f)}\operatorname{int}_{\tau}(k\circ f)(x)\wedge\bigvee_{\operatorname{cl}_{\tau}(l\circ f)\leq (h\circ f)}\operatorname{int}_{\tau}(l\circ f)(y)>\sup(g\wedge h)\geq \sup(g\circ f\wedge h\circ f),$

where $\bigvee_{y \in Y} (g \wedge h)(y) \ge \bigvee_{x \in X} (g \wedge h)(f(x)) = \bigvee_{x \in X} (g \circ f \wedge h \circ f)(x)$ in general, which means that there are $\lambda = g \circ f \in L^X$ and $\mu = h \circ f \in L^X$ such that

$$\bigvee_{\mathrm{cl}_{\tau}\eta\leq\lambda}\mathrm{int}_{\tau}\eta(x)\wedge\bigvee_{\mathrm{cl}_{\tau}\xi\leq\mu}\mathrm{int}_{\tau}\xi(y)>\mathrm{sup}(\lambda\wedge\mu).$$

Hence, $\operatorname{cl} \mathcal{N}(x) \wedge \operatorname{cl} \mathcal{N}(y)$ does not exist in $(X, \tau = f^{-1}(\sigma))$ and therefore $(X, f^{-1}(\sigma))$ is a $GT_{2\frac{1}{2}}$ -space. \Box

Assume now that a family $((X_i, \tau_i))_{i \in I}$ of $GT_{2\frac{1}{2}}$ -spaces and a family $(f_i)_{i \in I}$ of mappings $f_i : X \to X_i$ which are injective for some $i \in I$ are given where I may be any class.

Proposition 3.7 For the family $((X_i, \tau_i))_{i \in I}$ of $GT_{\mathcal{Z}_{\frac{1}{2}}}$ -spaces, the initial L-topological space $(X, \tau = \bigvee_{i \in I} f_i^{-1}(\tau_i))$ is also $GT_{\mathcal{Z}_{\frac{1}{2}}}$.

Proof. By a similar way, as in the proof of Proposition 3.6, we get that (X, τ) is $GT_{2\frac{1}{2}}$ -space. \Box

The subspaces and the product spaces of $GT_{2\frac{1}{2}}$ -spaces, in the categorical sense, are special initial $GT_{2\frac{1}{2}}$ -spaces ([1]), and therefore we have the following corollary.

Corollary 3.1 The L-topological subspaces and the L-topological product spaces of a family of $GT_{2\frac{1}{2}}$ -spaces are also $GT_{2\frac{1}{2}}$ -spaces.

Final $GT_{2\frac{1}{2}}$ -spaces. The final *L*-topology $\tau = \bigwedge_{i \in I} f_i(\tau_i)$ of a family $(\tau_i)_{i \in I}$ of $GT_{2\frac{1}{2}}$ -topologies with respect to $(f_i)_{i \in I}$ fulfills the following.

In case of one mapping we get this result.

Proposition 3.8 Let $f : X \to Y$ be a surjective L-open mapping and (X, τ) be a $GT_{2\frac{1}{2}}$ -space. Then the final L-topological space $(Y, \sigma = f(\tau))$ is also $GT_{2\frac{1}{2}}$.

Proof. Since f is surjective, then $a \neq b$ in Y implies there are $x \neq y$ in X such that a = f(x), b = f(y). (X, τ) is $GT_{2\frac{1}{2}}$ implies there are $g, h \in L^X$ such that $\operatorname{cl}\mathcal{N}(x)(g) \wedge \operatorname{cl}\mathcal{N}(y)(h) > \sup(g \wedge h)$. From (2.4), we have $\mathcal{N}(x) \leq \mathcal{N}(f^{-1}(a))$ and $\mathcal{N}(y) \leq \mathcal{N}(f^{-1}(b))$, and from (2.1), we get that $\operatorname{cl}\mathcal{N}(x) \leq \operatorname{cl}\mathcal{N}(f^{-1}(a))$ and $\operatorname{cl}\mathcal{N}(y) \leq \operatorname{cl}\mathcal{N}(f^{-1}(b))$. Hence, $\operatorname{cl}\mathcal{N}(f^{-1}(a))(g) \wedge \operatorname{cl}\mathcal{N}(f^{-1}(b))(h) > \sup(g \wedge h)$, that is, $\bigvee_{\operatorname{cl}_\tau k \leq g} \operatorname{int}_\tau k(f^{-1}(a)) \wedge \bigvee_{\operatorname{cl}_\tau l \leq h} \operatorname{int}_\tau l(f^{-1}(b)) > \sup(g \wedge h)$, which means that

$$\bigvee_{\operatorname{cl}_{\tau}k \leq g} f(\operatorname{int}_{\tau}k)(a) \wedge \bigvee_{\operatorname{cl}_{\tau}l \leq h} f(\operatorname{int}_{\tau}l)(b) > \sup(g \wedge h).$$

From that f is L-open, it follows

$$f(\operatorname{int}_{\tau} k) \leq \operatorname{int}_{f(\tau)} f(k)$$

for all $k \in L^X$, and hence $\bigvee_{\mathrm{cl}_\tau k \leq g} \mathrm{int}_{f(\tau)} f(k)(a) \wedge \bigvee_{\mathrm{cl}_\tau l \leq h} \mathrm{int}_{f(\tau)} f(l)(b) > \sup(g \wedge h) \geq \sup(f(g) \wedge f(h))$, where

$$\bigvee_{x \in X} (g \land h)(x) \ge \bigvee_{y \in Y} (g \land h)(f^{-1}(y)) = \bigvee_{y \in Y} (f(g) \land f(h))(y)$$

in general, and also from that f is L-continuous we get

$$\operatorname{cl}_{f(\tau)}h(f(x)) \ge \operatorname{cl}_{\tau}(h \circ f)(x)$$

for all $x \in X$ and all $h \in L^Y$, which implies

$$\bigvee_{\mathrm{l}_{f(\tau)}\eta \leq f(g)} \mathrm{int}_{f(\tau)}\eta(a) \wedge \bigvee_{\mathrm{cl}_{f(\tau)}\xi \leq f(h)} \mathrm{int}_{f(\tau)}\xi(b) > \sup(f(g) \wedge f(h)).$$

Taking $\lambda = f(g) \in L^Y$ and $\mu = f(h) \in L^Y$ we get

$$\bigvee_{\operatorname{cl}_{f(\tau)}k\leq\lambda}\operatorname{int}_{f(\tau)}k(a)\wedge\bigvee_{\operatorname{cl}_{f(\tau)}l\leq\mu}\operatorname{int}_{f(\tau)}l(b)>\operatorname{sup}(\lambda\wedge\mu).$$

Thus, $\operatorname{cl} \mathcal{N}(a) \wedge \operatorname{cl} \mathcal{N}(b)$ does not exist and therefore $(Y, f(\tau))$ is a $GT_{2\frac{1}{2}}$ -space. \Box

For any class I we have the following result.

Proposition 3.9 Let $((X_i, \tau_i))_{i \in I}$ be a family of $GT_{2\frac{1}{2}}$ -spaces and $(f_i)_{i \in I}$ a family of mappings $f_i : X_i \to X$ which are surjective L-open for some $i \in I$. Then the final L-topological space $(X, \tau = \bigwedge_{i \in I} f_i(\tau_i))$ is also $GT_{2\frac{1}{2}}$.

Proof. By using a similar proof, as in case of Proposition 3.8, we get that (X, τ) is a $GT_{2\frac{1}{2}}$ -space. \Box

The quotient and the sum spaces of $GT_{2\frac{1}{2}}$ -spaces, in the categorical sense, are special final $GT_{2\frac{1}{2}}$ -spaces ([1]) and therefore we have the following result.

Corollary 3.2 The L-topological quotient spaces and the L-topological sum spaces of a family of $GT_{\mathcal{Z}_{\frac{1}{2}}}$ -spaces are also $GT_{\mathcal{Z}_{\frac{1}{2}}}$ -spaces.

4. GT_5 -spaces

In this section we shall introduce the GT_5 -spaces and make for these spaces a similar study to the study of $GT_{2\frac{1}{2}}$ -spaces.

Let (X, τ) be an *L*-topological space and let $A, B \subseteq X$. Then A, B are called *separated* if $A \cap cl_{\tau}B = cl_{\tau}A \cap B = \emptyset$.

Definition 4.1 An *L*-topological space (X, τ) is called *completely normal* if for any two separated sets A, B in X we have $\mathcal{N}(A) \wedge \mathcal{N}(B)$ does not exist.

Definition 4.2 An *L*-topological space (X, τ) is called GT_5 if it is completely normal and GT_1 .

A L-topological space (X, τ) is called a *completely normal space* or a GT_5 -space if it fulfills the axioms of being completely normal or GT_5 , respectively.

We have the following example for GT_5 -spaces.

Example 4.1 Let $X = \{x, y\}$ with $x \neq y$ and let $\tau = \{\overline{0}, \overline{1}, x_1, y_1\}$. Then $\{x\}, \{y\}$ are the only separated sets which fulfill the condition of being completely normal and it is also GT_1 . Hence, (X, τ) is a GT_5 -space.

The following proposition shows that the implication between GT_5 -spaces and GT_4 -spaces goes well.

Proposition 4.1 Every GT_5 -space is a GT_4 -space.

Proof. Let (X, τ) be a GT_5 -space. Then (X, τ) is GT_1 and completely normal. Since any two disjoint closed subsets A, B in (X, τ) are separated, then $\mathcal{N}(A) \wedge \mathcal{N}(B)$ does not exist and thus (X, τ) is a normal space. Therefore, (X, τ) is a GT_4 -space. \Box

Here, an example for GT_4 -spaces which are not GT_5 -spaces.

Example 4.2 The Tychonoff Plank Space, in the crisp case, is an example for a GT_4 -space and not GT_5 -space. It is known that the Tychonoff Plank Space (T, τ) is defined as follows: The Tychonoff Plank T is defined to be $[0, \Omega] \times [0, \omega]$, where Ω is the first uncountable ordinal and ω is the first infinite ordinal, and both ordinal spaces $[0, \Omega]$ and $[0, \omega]$ are given the interval topology, and τ is the product interval topology on T.

In the following theorem there will be introduced some equivalent definitions for the completely normal spaces. **Theorem 4.1** Let (X, τ) be an L-topological space. Then the following are equivalent.

- (1) (X, τ) is completely normal.
- (2) Every subspace (A, τ_A) is normal.
- (3) Every open subspace (A, τ_A) is normal.

Proof. (1) \Rightarrow (2): Let $\mathcal{N}_{\tau}(M)$ and $\mathcal{N}_{\tau_A}(M)$ be the *L*-neighborhood filters at a subset *M* of *X* with respect to τ and τ_A , respectively. Let *B*, *C* be two disjoint closed sets in (A, τ_A) . Then there are $F_1, F_2 \in \tau'$ such that $B = A \cap F_1, C = A \cap F_2$ and $B \cap C = A \cap (F_1 \cap F_2) = \emptyset$. Now $cl_{\tau}B \cap C = B \cap cl_{\tau}C \subseteq A \cap (F_1 \cap F_2) = \emptyset$, that is, *B*, *C* are separated sets in (X, τ) and then we have $\mathcal{N}_{\tau}(B) \wedge \mathcal{N}_{\tau}(C)$ does not exist. Since $\mathcal{N}_{\tau}(B) = \mathcal{N}_{\tau_A}(B)$ for all $B \subseteq A$, then $\mathcal{N}_{\tau_A}(B) \wedge \mathcal{N}_{\tau_A}(C)$ does not exist. Hence, (A, τ_A) is a normal space.

 $(2) \Rightarrow (3)$: Clear.

(3) \Rightarrow (1): Let B, C be separated sets in (X, τ) . Then $C \subseteq cl_{\tau}C \setminus cl_{\tau}B = F_1$, $B \subseteq cl_{\tau}B \setminus cl_{\tau}C = F_2, F_1 \cap F_2 = \emptyset$. Both of F_1 and F_2 are closed in the open subspace (A, τ_A) , where $A = X \setminus (cl_{\tau}B \cap cl_{\tau}C), F_1 = cl_{\tau}C \cap A$ and $F_2 = cl_{\tau}B \cap A$. (A, τ_A) is normal implies $\mathcal{N}_{\tau_A}(F_1) \wedge \mathcal{N}_{\tau_A}(F_2)$ does not exist, and since $\mathcal{N}_{\tau}(M) \leq \mathcal{N}_{\tau_A}(M)$ for any subset $M \subseteq X$, then there are $f, g \in L^X$ such that $\mathcal{N}_{\tau}(F_1)(f) \wedge \mathcal{N}_{\tau}(F_2)(g) >$ $\sup(f \wedge g)$ in (X, τ) . Hence,

$$\bigwedge_{x \in C} \operatorname{int}_{\tau} f(x) \wedge \bigwedge_{y \in B} \operatorname{int}_{\tau} g(y) \ge \bigwedge_{x \in F_1} \operatorname{int}_{\tau} f(x) \wedge \bigwedge_{y \in F_2} \operatorname{int}_{\tau} g(y) > \sup(f \wedge g),$$

which means that $\mathcal{N}_{\tau}(B) \wedge \mathcal{N}_{\tau}(C)$ does not exist, and therefore (X, τ) is a completely normal space. \Box

From Theorem 4.1 and (2) in Proposition 2.1, we have the following result.

Corollary 4.1 If (X, τ) is a GT_1 -space, then the following are equivalent.

- (1) (X, τ) is a GT_5 -space.
- (2) Every subspace (A, τ_A) is a GT_4 -space.
- (3) Every open subspace (A, τ_A) is a GT_4 -space.

In the sequel, it will be shown that the *L*-metric space (X, τ_{ϱ}) in sense of Gähler, which had been introduced in [12], is an example for our GT_5 -spaces, where τ_{ϱ} is the stratified *L*-topology generated by the *L*-metric ϱ on *X*. To prove this result, we need the following proposition. **Proposition 4.2** [7] Any L-metric space (X, τ_{ϱ}) is a GT_4 -space.

Proposition 4.3 Any *L*-metric space (X, τ_{ϱ}) is a GT_5 -space.

Proof. Let F, G be two separated subsets of (X, τ_{ϱ}) . Since any two separated sets are disjoint and from Proposition 4.2, in which the proof does not depend on that the two sets are closed, we get that $\mathcal{N}(F) \wedge \mathcal{N}(G)$ does not exist. Hence, (X, τ) is a GT_5 -space. \Box

Example 4.3 From Proposition 4.3, we get that the *L*-metric space (X, ϱ) is an example for our notion of GT_5 -space, and thus from (1) in Proposition 2.1 and from Propositions 3.1, 3.2 and 4.1, we get that it is also an example of our GT_i -spaces, $i = 0, 1, 2, 2\frac{1}{2}, 3, 3\frac{1}{2}, 4$.

Proposition 4.4 [3] A topological space (X, T) is T_1 -space if and only if the induced L-topological space $(X, \omega(T))$ is a GT_1 -space.

Here we show that our notion of GT_5 -spaces is an extension with respect to the functor ω in sense of Lowen ([17]).

Proposition 4.5 A topological space (X, T) is a T_5 -space if and only if the induced L- topological space $(X, \omega(T))$ is a GT_5 -space.

Proof. From Proposition 4.4, we get (X, T) is a T_1 -space if and only if $(X, \omega(T))$ is a GT_1 -space. If (X, T) is completely normal and A, B are separated sets in $(X, \omega(T))$, then A, B are separated in (X, T) and hence there are $\mathcal{O}_A, \mathcal{O}_B \in T$ such that $\mathcal{O}_A \cap \mathcal{O}_B = \emptyset$. Hence, there are $f = \chi_{\mathcal{O}_A} \in L^X$, $g = \chi_{\mathcal{O}_B} \in L^X$ for which

$$\mathcal{N}(A)(f) \wedge \mathcal{N}(B)(g) = \bigwedge_{x \in A} \operatorname{int}_{\omega(T)} f(x) \wedge \bigwedge_{y \in B} \operatorname{int}_{\omega(T)} g(y) = 1 > 0 = \sup(f \wedge g).$$

Thus $\mathcal{N}(A) \wedge \mathcal{N}(B)$ does not exist, and then $(X, \omega(T))$ is a completely normal space.

Conversely, let $(X, \omega(T))$ be a completely normal space and A, B are separated sets in (X, T). Then A, B are separated sets in $(X, \omega(T))$ and there are $f, g \in L^X$ for which $\bigwedge_{x \in A} \operatorname{int}_{\omega(T)} f(x) \land \bigwedge_{y \in B} \operatorname{int}_{\omega(T)} g(y) > \sup(f \land g)$. Since $\operatorname{int}_{\omega(T)} f \in \omega(T)$ and $\operatorname{int}_{\omega(T)} f(x) > \sup(f \land g)$ for each $x \in A$, then taking $\alpha = \sup(f \land g)$, we get $A \subseteq s_{\alpha}(\operatorname{int}_{\omega(T)} f)$ and $s_{\alpha}(\operatorname{int}_{\omega(T)} f) \in T$. Similarly, we get $B \subseteq s_{\alpha}(\operatorname{int}_{\omega(T)} g)$ and $s_{\alpha}(\operatorname{int}_{\omega(T)} g) \in T$. Hence, there are neighborhoods $\mathcal{O}_A = s_{\alpha}(\operatorname{int}_{\omega(T)} f)$ and $\mathcal{O}_B = s_{\alpha}(\operatorname{int}_{\omega(T)} g)$ of A and B, respectively, and moreover we get $\mathcal{O}_A \cap \mathcal{O}_B =$ $s_{\alpha}(\operatorname{int}_{\omega(T)} f) \cap s_{\alpha}(\operatorname{int}_{\omega(T)} g) = \emptyset$. Thus, (X, T) is a completely normal space. \Box

The following proposition shows that the finer L-topological space of a GT_5 -space is also a GT_5 -space.

Proposition 4.6 [3] Let (X, τ) be a GT_1 -space and let σ be an L-topology on X finer than τ . Then (X, σ) is also a GT_1 -space.

Proposition 4.7 [4] Let (X, τ) be a GT_4 -space and let σ be an L-topology on X finer than τ . Then (X, σ) is also a GT_4 -space.

Proposition 4.8 Let (X, τ) be a GT_5 -space and let σ be an L-topology on X finer than τ . Then (X, σ) is also a GT_5 -space.

Proof. From Proposition 4.6, we get that (X, σ) is a GT_1 -space. Let $A \subseteq X$. Then, from Corollary 4.1, (X, τ) is GT_5 -space implies that (A, τ_A) is a GT_4 -space. Since $\tau_A \subseteq \sigma_A$, then from Proposition 4.7 we have (A, σ_A) is a GT_4 -space. Hence, from Corollary 4.1 again, (X, σ) is a GT_5 -space. \Box

Initial GT_5 -spaces. In the following we shall show that the initial *L*-topology $\tau = \bigvee_{i \in I} f_i^{-1}(\tau_i)$ of a family $(\tau_i)_{i \in I}$ of GT_5 -topologies with respect to $(f_i)_{i \in I}$ fulfills the following results.

Proposition 4.9 [3] Let (X_i, τ_i) be a GT_1 -space for all $i \in I$ and let $f_i : X \to X_i$ be an injective mapping for some $i \in I$. Then the initial L-topological space (X, τ) is also GT_1 .

Consider the case of I as a singleton.

Proposition 4.10 Let (Y, σ) be a GT_5 -space and let $f : X \to Y$ be an injective mapping. Then the initial L-topological space $(X, \tau = f^{-1}(\sigma))$ is also GT_5 .

Proof. Let $\mathcal{N}_{\tau}(F) \ \mathcal{N}_{\sigma}(G)$ be the *L*-neighborhood filters at subsets *F* and *G* of *X* and *Y* with respect to τ and σ , respectively. If *A*, *B* be two separated subsets of *X*, then from that *f* is injective, it follows $f(A) \cap \operatorname{cl}_{\sigma}(f(B)) \subseteq f(A) \cap f(\operatorname{cl}_{\tau}B) = \emptyset$ and $f(B) \cap \operatorname{cl}_{\sigma}(f(A)) \subseteq f(B) \cap f(\operatorname{cl}_{\tau}A) = \emptyset$. That is, f(A) and f(B) are separated sets in (Y, σ) and thus $\mathcal{N}_{\sigma}(f(A)) \wedge \mathcal{N}_{\sigma}(f(B))$ does not exist, which means that there exist $g, h \in L^Y$ such that

$$\bigwedge_{x \in A} (\operatorname{int}_{\sigma} g)(f(x)) \wedge \bigwedge_{y \in B} (\operatorname{int}_{\sigma} h)(f(y)) > \sup(g \wedge h),$$

which means that

$$\bigwedge_{x \in A} ((\operatorname{int}_{\sigma} g) \circ f)(x) \wedge \bigwedge_{y \in B} ((\operatorname{int}_{\sigma} h) \circ f)(y) > \sup((g \circ f) \wedge (h \circ f)).$$

Because of that $f: (X, \tau = f^{-1}(\sigma)) \to (Y, \sigma)$ is *L*-continuous it follows $(\operatorname{int}_{\sigma} g) \circ f \leq \operatorname{int}_{\tau}(g \circ f)$ for all $g \in L^Y$ and thus we have

$$\bigwedge_{x \in A} (\operatorname{int}_{\tau}(g \circ f))(x) \land \bigwedge_{y \in B} (\operatorname{int}_{\tau}(h \circ f))(y) > \sup((g \circ f) \land (h \circ f)).$$

Thus there exist $k = g \circ f, l = h \circ f \in L^X$ such that

$$\bigwedge_{x \in A} (\operatorname{int}_{\tau} k)(x) \wedge \bigwedge_{y \in B} (\operatorname{int}_{\tau} l)(y) > \sup(k \wedge l).$$

Hence, $\mathcal{N}_{\tau}(A) \wedge \mathcal{N}_{\tau}(B)$ does not exist, and thus $(X, \tau = f^{-1}(\sigma))$ is a completely normal space and it is also, from Proposition 4.9, a GT_1 -space. Therefore, it is a GT_5 -space. \Box

Now consider the case of I be any class.

Proposition 4.11 For all $i \in I$, let (X_i, τ_i) be a GT_5 -space and $f_i : X \to X_i$ a mapping of X into X_i which are injective for some $i \in I$. Then the initial Ltopological space (X, τ) is also GT_5 .

Proof. By a similar proof to what we have done in Proposition 4.10. \Box

From Propositions 4.10 and 4.11, we get the following result.

Corollary 4.2 The *L*- topological subspaces and the *L*-topological product spaces of GT_5 -spaces are also GT_5 -spaces.

Final GT_5 -spaces. Now we are going to show that the final *L*-topological space $(X, \tau = \bigwedge_{i \in I} f_i(\tau_i))$ of a family $((X_i, \tau_i))_{i \in I}$ of GT_5 -spaces is also a GT_5 -space.

Proposition 4.12 [3] Let I be any class and (X_i, τ_i) be a GT_1 -space for all $i \in I$ and $f_i : X_i \to X$ a surjective L-open mapping for some $i \in I$. Then the final L-topological space (X, τ) is also GT_1 .

Proposition 4.13 If (X, τ) is a GT_5 -space and $f : X \to Y$ a surjective L-open mapping, then the final L-topological space $(Y, \sigma = f(\tau))$ is also GT_5 .

Proof. Let F, G be separated subsets of Y. Since f is surjective and continuous, then $f^{-1}(F), f^{-1}(G)$ are also separated closed subsets of X. From that (X, τ) is a completely normal space, it follows $\mathcal{N}_{\tau}(f^{-1}(F)) \wedge \mathcal{N}_{\tau}(f^{-1}(G))$ does not exist, that is, there are $g, h \in L^X$ such that

$$\bigwedge_{z \in f^{-1}(F)} (\operatorname{int}_{\tau} g)(z) \wedge \bigwedge_{w \in f^{-1}(G)} (\operatorname{int}_{\tau} h)(w) > \sup(g \wedge h),$$

which means

$$\bigwedge_{x\in F} (\operatorname{int}_{\tau} g)(f^{-1}(x)) \wedge \bigwedge_{y\in G} (\operatorname{int}_{\tau} h)(f^{-1}(y)) > \sup(g \wedge h),$$

and this means

$$\bigwedge_{x \in F} (f(\operatorname{int}_{\tau} g))(x) \wedge \bigwedge_{y \in G} (f(\operatorname{int}_{\tau} h))(y) > \sup(g \wedge h).$$

Since f is L-open, it follows $f(\operatorname{int}_{\tau} g) \leq \operatorname{int}_{\sigma}(f(g))$ for all $g \in L^X$ and therefore

$$\bigwedge_{x \in F} (\operatorname{int}_{\sigma} f(g))(x) \wedge \bigwedge_{y \in G} (\operatorname{int}_{\sigma} f(h))(y) > \sup(f(g) \wedge f(h)).$$

Hence, $\mathcal{N}_{\sigma}(F) \wedge \mathcal{N}_{\sigma}(G)$ does not exist, and thus the final *L*-topological space $(Y, \sigma = f(\tau))$ is completely normal and it is also from Proposition 4.12, a GT_1 -space, and therefore it is GT_5 -space. \Box

Proposition 4.14 Let I be any class and (X_i, τ_i) be a GT_5 -space for all $i \in I$ and $f_i : X_i \to X$ a surjective L-open mapping for some $i \in I$. Then the final L-topological space (X, τ) is also GT_5 .

Proof. By means of Proposition 4.12, and by a similar way to the proof of Proposition 4.13, the proof will come easily. \Box

Corollary 4.3 The *L*-topological sum spaces and the *L*-topological quotient spaces of GT_5 -spaces are also GT_5 -spaces.

5. GT_6 -spaces

In this section we introduce the GT_6 -spaces and make a similar study to our studies on the notions of $GT_{2\frac{1}{2}}$ -spaces and GT_5 -spaces. The GT_6 -spaces are defined, using the *L*- unit interval I_L with the *L*-topology \Im defined by Gähler in [12], as follows.

Definition 5.1 An *L*-topological space (X, τ) is called *perfectly normal* if for all F, G disjoint closed sets in X, there is an *L*-continuous mapping $f : (X, \tau) \to (I_L, \mathfrak{F})$ such that $f^{-1}(\overline{0}) = F$ and $f^{-1}(\overline{1}) = G$.

Definition 5.2 An *L*-topological space (X, τ) is called GT_6 if it is GT_1 and perfectly normal.

An L-topological space (X, τ) is called a GT_6 -space (a perfectly normal space) if it fulfills the axiom of being GT_6 (perfectly normal).

Definition 5.3 A subset A of an L-topological space (X, τ) is called a G_{δ} -set $(F_{\sigma}$ -set) if it is a countable intersection (union) of open (closed) sets.

The complement of an F_{σ} -set is a G_{δ} -set and vice versa.

Definition 5.4 A subset A of an L-topological space (X, τ) is called *functionally* closed if $A = f^{-1}(\overline{0})$ for some L-continuous function $f : (X, \tau) \to (I_L, \Im)$. The complement of a functionally closed set is called *functionally open*.

Let f and g be L-sets in X. Then a function $h: X \to I_L$ is said to separate f and g if $\overline{0} \leq h(x) \leq \overline{1}$ for all $x \in X$, $x_1 \leq f$ implies $h(x) = \overline{1}$ and $y_1 \leq g$ implies $h(y) = \overline{0}$. Moreover, if Φ is a family of such functions on X, then the sets $f, g \in L^X$ are called Φ -separated or Φ -separable. That is, there exists a function $h \in \Phi$ separating them ([7]).

Lemma 5.1 [7] Urysohn's Lemma Let (X, τ) be an L-topological space, and let Φ be the family of all continuous functions $f : (X, \tau) \to (I_L, \mathfrak{F})$. Then (X, τ) is normal if and only if for all $F, G \subseteq X$ with F, G disjoint closed sets in X, there exists a function $f \in \Phi$ which separates χ_F and χ_G .

Using Lemma 5.1, we shall prove the following result.

Lemma 5.2 Let A be a closed (open) subset of a normal space (X, τ) . Then A is a G_{δ} -set $(F_{\sigma}$ -set) if and only if A is a functionally closed (open) set.

Proof. Let A be a closed G_{δ} -set in (X, τ) , then A' is an F_{σ} -set, that is, $A' = \bigcup_{n \in \mathbb{N}} F_n$, $F_n \in \tau'$ for each positive integer $n \in \mathbb{N}$. By Urysohn's Lemma, there exists a continuous function $f_n : (X, \tau) \to (I, U)$, where (I, U) is (I_L, \mathfrak{F}) in the crisp case, such that $f_n(A) = 0$ and $f_n(F_n) = 1$ for all $n \in \mathbb{N}$. Set $g(x) = \frac{f_n}{2^n}$. Then $g : (X, \tau) \to (I, U)$ is continuous, and for each $x \in A$ we get g(x) = 0 and when $x \notin A$, there exists an index n_0 such that $x \in F_{n_0}$, and then $g(x) \geq \frac{f_{n_0}(x)}{2^{n_0}} = \frac{1}{2^{n_0}} > 0$, that is, $g^{-1}(0) = A$. Taking the continuous function $\sim: (I, U) \to (I_L, \mathfrak{F})$ defined by $\sim (i) = \overline{i}$ for all $i \in I$, we get that $(\sim \circ g) : (X, \tau) \to (I_L, \mathfrak{F})$ is L- continuous and $(\sim \circ g)^{-1}(\overline{0}) = g^{-1}(0) = A$. Thus A is functionally closed.

Conversely; suppose that there exists a continuous function $f: (X, \tau) \to (I_L, \mathfrak{F})$ such that $f^{-1}(\overline{0}) = A$ where $A \in \tau'$. Since the element $\chi_{\overline{0}}: I_L \to L$, which has value 1 at $\overline{0}$ and 0 otherwise, is a closed G_{δ} -set in (I_L, \mathfrak{F}) , then $A = f^{-1}(\overline{0})$ is a closed G_{δ} -set in (X, τ) .

Taking the complements, we can show that A is an F_{σ} -set if and only if A is a functionally open set. \Box

Remark 5.1 Let F, G be two disjoint closed sets in (X, τ) and let $f : (X, \tau) \to (I_L, \Im)$ be an *L*-continuous mapping. Then we have

$$f^{-1}(\overline{0}) = F$$
 and $f^{-1}(\overline{1}) = G$ implies $f(F) = \overline{0}$ and $f(G) = \overline{1}$.

That is, in general, (X, τ) is a GT_6 -space implies that (X, τ) is a GT_4 -space. Moreover, if f is injective, we get that

 $f^{-1}(\overline{0}) = F$ and $f^{-1}(\overline{1}) = G \iff f(F) = \overline{0}$ and $f(G) = \overline{1}$.

In the next theorem, we introduce an equivalent definition for our GT_6 -spaces.

Theorem 5.1 The following are equivalent.

- (1) (X, τ) is a GT_6 -space.
- (2) (X, τ) is a GT_4 -space and every open set is an F_{σ} -set.
- (3) (X, τ) is a GT_4 -space and every closed set is a G_{δ} -set.

Proof. (1) \Rightarrow (2): Since for any disjoint closed subsets F, G of X, there exists an L-continuous function $f: (X, \tau) \to (I_L, \mathfrak{F})$ such that $f^{-1}(\overline{0}) = F$ and $f^{-1}(\overline{1}) = G$, then from Remark 5.1 we have $f(F) = \overline{0}$ and $f(G) = \overline{1}$. Hence, by Lemma 5.1, (X, τ) is a GT_4 -space. Now, let $A \in \tau$, then for $A' \in \tau'$ we get that $f^{-1}(\overline{0}) = A'$ and then A' is functionally closed. Hence, from Lemma 5.2, we get that A' is a G_{δ} -set and thus A is an F_{σ} -set.

 $(2) \Rightarrow (3)$: Obvious.

 $(3) \Rightarrow (1)$: If F, G are two disjoint closed sets in X, then $F = \bigcap_{n \in \mathbb{N}} A_n$ where each A_n is open and also $G = \bigcap_{n \in \mathbb{N}} B_n$ where each B_n is open. Since (X, τ) is a GT_4 -space, then from Urysohn's Lemma we have continuous functions $f_n, g_n : (X, \tau) \to (I, U)$ such that $f_n(F) = 0, f_n(A'_n) = 1$ and $g_n(G) = 0, g_n(B'_n) = 1$ for all $n \in \mathbb{N}$. Set $f_F(x) = \frac{f_n(x)}{2^n}$ and $f_G(x) = \frac{g_n(x)}{2^n}$.

Define $f: (X, \tau) \to (I, U)$ by $f(x) = \frac{f_F(x)}{f_F(x) + f_G(x)}$, which means that

$$f(x) = \frac{f_n(x)}{f_n(x) + g_n(x)} = 1 - \frac{g_n(x)}{f_n(x) + g_n(x)}$$

Then $f^{-1}(0) = F$ and $f^{-1}(1) = G$ and f itself is continuous. Using the continuous function $\sim : (I, U) \to (I_L, \Im)$ defined by $\sim (i) = \overline{i}$ for all $i \in I$, we get that $(\sim \circ f) : (X, \tau) \to (I_L, \Im)$ is L- continuous and $(\sim \circ f)^{-1}(\overline{0}) = f^{-1}(0) = F$ and $(\sim \circ f)^{-1}(\overline{1}) = f^{-1}(1) = G$. Hence, (X, τ) is a GT_6 -space. \Box

Now, we have an example for GT_6 -spaces.

Example 5.1 Let $X = \{x, y\}$ with $x \neq y$ and let $\tau = \{\overline{0}, \overline{1}, x_1, y_1\}$. Then $\tau' = \tau$ and then $\{x\} = cl_{\tau}\{x\}$ and $\{y\} = cl_{\tau}\{y\}$.

Since $f: (X, \tau) \to (I_L, \Im)$ defined by $f(x) = \overline{1}$ and $f(y) = \overline{0}$ is an *L*-continuous mapping, and also it is injective, then from Remark 5.1 we get that $f^{-1}(\overline{1}) = \{x\}$ and $f^{-1}(\overline{0}) = \{y\}$. It is clear that (X, τ) is a GT_1 -space. Thus, (X, τ) is a GT_6 -space. The following proposition and example show that the class of GT_5 -spaces is larger than the class of GT_6 -spaces.

Proposition 5.1 Every GT_6 -space is a GT_5 -space.

Proof. Since (X, τ) is a GT_6 -space. That is, by Theorem 5.1, (X, τ) is GT_4 and every open set is an F_{σ} -set. Then for an open set A, and for any two disjoint closed sets B, C in (X, τ) , we have $\mathcal{N}_{\tau}(B) \wedge \mathcal{N}_{\tau}(C)$ does not exist, and since $A = \bigcup_{n \in \mathbb{N}} F_n$, $F_n \in \tau'$, then the disjoint closed subsets $F = A \cap B$ and $G = A \cap C$ of A are disjoint closed sets in (A, τ_A) with

$$\bigwedge_{x \in F} \operatorname{int}_{\tau_A} f(x) \wedge \bigwedge_{y \in G} \operatorname{int}_{\tau_A} g(y) \ge \bigwedge_{x \in B} \operatorname{int}_{\tau} f(x) \wedge \bigwedge_{y \in C} \operatorname{int}_{\tau} g(y) > \sup(f \wedge g)$$

for some $f, g \in L^X$, that is, $\mathcal{N}_{\tau}(F) \wedge \mathcal{N}_{\tau}(G)$ does not exist and thus $\mathcal{N}_{\tau_A}(F) \wedge \mathcal{N}_{\tau_A}(G)$ also does not exist. Hence, the open subspace (A, τ_A) is GT_4 and therefore, (X, τ) is a GT_5 -space. \Box

We introduce in the following example a GT_5 -space which is not GT_6 -space.

Example 5.2 Let $X = \{x, y, z\}$ where all the elements are distinct, and let

$$\tau = \{\overline{0}, \overline{1}, y_{\frac{1}{2}}, y_1, x_{\frac{3}{4}} \lor y_{\frac{1}{2}}, x_{\frac{3}{4}} \lor y_1, y_{\frac{1}{2}} \lor z_1, x_1 \lor y_1, y_1 \lor z_1, x_{\frac{3}{4}} \lor y_{\frac{1}{2}} \lor z_1, x_{\frac{3}{4}} \lor y_1 \lor z_1\}.$$
Then

Then

$$\tau' = \{\overline{0}, \overline{1}, x_{\frac{1}{4}}, x_1, z_1, x_1 \lor y_{\frac{1}{2}}, x_{\frac{1}{4}} \lor z_1, x_{\frac{1}{4}} \lor y_{\frac{1}{2}}, x_1 \lor z_1, x_{\frac{1}{4}} \lor y_{\frac{1}{2}} \lor z_1, x_1 \lor y_{\frac{1}{2}} \lor z_1\},$$

and there are only $\{x\}$, $\{z\}$ as disjoint closed sets in (X, τ) . Since any mapping $f: (X, \tau) \to (I_L, \Im)$ such that $f^{-1}(\overline{1}) = \{x\}$ and $f^{-1}(\overline{0}) = \{z\}$ is not *L*-continuous, then (X, τ) is not perfectly normal and thus it is not a GT_6 -space.

Now, we prove that (X, τ) is a GT_5 -space. At first (X, τ) is a GT_1 -space from that:

At $x \neq y$: $f = x_{\frac{3}{4}} \lor y_{\frac{1}{2}} \in L^X$, $g = y_1 \in L^X$ implies

$$\mathcal{N}(x)(f) \wedge \mathcal{N}(y)(g) = \frac{3}{4} > \frac{1}{2} = \sup(f \wedge g),$$

At $y \neq z$: $f = y_1 \in L^X$, $g = y_{\frac{1}{2}} \lor z_1 \in L^X$ implies

$$\mathcal{N}(x)(f) \wedge \mathcal{N}(y)(g) = 1 > \frac{1}{2} = \sup(f \wedge g),$$

At $x \neq z$: $f = x_1 \lor y_1 \in L^X$, $g = y_{\frac{1}{2}} \lor z_1 \in L^X$ implies

$$\mathcal{N}(x)(f) \wedge \mathcal{N}(y)(g) = 1 > \frac{1}{2} = \sup(f \wedge g).$$

Since

$$\{x\} \cap cl_{\tau}\{y\} = \{x\} \cap X \neq \emptyset = \{x\} \cap \{y\} = cl_{\tau}\{x\} \cap \{y\}; \{y\} \cap cl_{\tau}\{z\} = \{y\} \cap \{z\} = \emptyset \neq X \cap \{z\} = cl_{\tau}\{y\} \cap \{z\}; \{x\} \cap cl_{\tau}\{z\} = \{x\} \cap \{z\} = \emptyset = \{x\} \cap \{z\} = cl_{\tau}\{x\} \cap \{z\};$$

then there are only $\{x\}$ and $\{z\}$ as two separated sets in (X, τ) . As in before, $f = x_1 \lor y_1 \in L^X, \ g = y_{\frac{1}{2}} \lor z_1 \in L^X$ implies

$$\mathcal{N}(x)(f) \wedge \mathcal{N}(y)(g) = 1 > \frac{1}{2} = \sup(f \wedge g)$$

and thus (X, τ) is a completely normal space. Hence, (X, τ) is a GT_5 -space and is not a GT_6 -space.

Now, we show that our notion of GT_6 -space is an extension with respect to the functor ω in sense of Lowen ([17]).

Proposition 5.2 A topological space (X, T) is T_6 -space if and only if the induced L-topological space $(X, \omega(T))$ is a GT_6 -space.

Proof. By means of Proposition 4.4, we have (X,T) is T_1 equivalent to that $(X, \omega(T))$ is GT_1 .

Now, let F, G be two disjoint closed sets in $(X, \omega(T))$. Then F, G are disjoint closed in (X, T). Since (X, T) is perfectly normal, then there exists a continuous mapping $g: (X, T) \to (I, U)$ such that $g^{-1}(1) = F$ and $g^{-1}(0) = G$. Since $k \in \omega(T)$ implies that $s_{\alpha}k \in U$ for some $\alpha \in L_1$, and that $s_{\alpha}(g^{-1}(k)) = g^{-1}(s_{\alpha}k) \in T$, which means that $g^{-1}(k) \in \omega(T)$, and hence $g: (X, \omega(T)) \to (I, \omega(U))$ is L-continuous.

Consider the *L*-continuous mapping $f : (I, \omega(U)) \to (I_L, \mathfrak{F}), f(\alpha) = \overline{\alpha}$ for all $\alpha \in I$. Then $(f \circ g) : (X, \omega(T)) \to (I_L, \mathfrak{F})$ is *L*-continuous such that

$$(f \circ g)^{-1}(\overline{1}) = g^{-1}(f^{-1}(\overline{1})) = g^{-1}(1) = F$$

and

$$(f \circ g)^{-1}(\overline{0}) = g^{-1}(f^{-1}(\overline{0})) = g^{-1}(0) = G.$$

That is $(X, \omega(T))$ is a GT_6 -space.

Conversely, let F, G be two disjoint closed sets in (X, T). Then F, G are disjoint closed in $(X, \omega(T))$. Since $(X, \omega(T))$ is perfectly normal, then there exists an Lcontinuous mapping $g: (X, \omega(T)) \to (I_L, \Im)$ such that $g^{-1}(\overline{1}) = F$ and $g^{-1}(\overline{0}) = G$. Since we deal with ordinary subsets, then from the identifications T with $\omega(T)$ and U with \Im in the crisp case, we get that there exists a continuous mapping $f: (X,T) \to (I,U)$ such that $f^{-1}(1) = F$ and $g^{-1}(0) = G$. Hence, (X,T) is a T_6 -space. \Box

The following proposition shows that the finer L-topological space of a GT_6 -space is also a GT_6 -space.

Proposition 5.3 Let (X, τ) be a GT_6 -space and let σ be an L- topology on X finer than τ . Then (X, σ) is also a GT_6 -space.

Proof. From Proposition 4.6, we get (X, σ) is a GT_1 -space. Let F, G be two disjoint closed sets in (X, σ) . Then $\tau \subseteq \sigma$ implies that F, G are disjoint closed in (X, τ) and hence there exists an L-continuous mapping $f : (X, \tau) \to (I_L, \mathfrak{F})$ such that $f^{-1}(\overline{1}) = F$ and $f^{-1}(\overline{0}) = G$. Also, $\tau \subseteq \sigma$ implies that $f : (X, \sigma) \to (I_L, \mathfrak{F})$ is L-continuous, and therefore (X, σ) is a GT_6 -space. \Box

Initial GT_6 -spaces. The initial *L*-topology $\tau = \bigvee_{i \in I} f_i^{-1}(\tau_i)$ of a family $(\tau_i)_{i \in I}$ of GT_6 -topologies with respect to $(f_i)_{i \in I}$ fulfills the following results.

At first consider the case of one mapping.

Proposition 5.4 Let $f : X \to Y$ be an injective mapping and (Y, σ) be a GT_6 -space. Then the initial L-topological space $(X, \tau = f^{-1}(\sigma))$ is GT_6 .

Proof. Let F, G be disjoint closed sets in (X, τ) , then from that f is injective it follows f(F), f(G) are disjoint closed sets in (Y, σ) and thus there exists an Lcontinuous mapping $g: (Y, \sigma) \to (I_L, \mathfrak{F})$ such that $g^{-1}(\overline{0}) = f(F)$ and $g^{-1}(\overline{1}) =$ f(G). Hence, $(g \circ f)^{-1}(\overline{0}) = f^{-1}(g^{-1}(\overline{0})) = f^{-1}(f(F)) = F$ and $(g \circ f)^{-1}(\overline{1}) =$ $f^{-1}(g^{-1}(\overline{1})) = f^{-1}(f(G)) = G$. That is, there is a continuous mapping $h = g \circ f$: $(X, \tau) \to (I_L, \mathfrak{F})$ such that $h^{-1}(\overline{0}) = F$ and $h^{-1}(\overline{1}) = G$. Thus, (X, τ) is a perfectly normal space and it is also, from Proposition 4.9, a GT_1 -space. Hence, (X, τ) is a GT_6 -space. \Box

Assume now that a family $((X_i, \tau_i))_{i \in I}$ of GT_6 -spaces and a family $(f_i)_{i \in I}$ of mappings $f_i : X \to X_i$ which are injective for some $i \in I$ are given, where I may be any class.

Proposition 5.5 For the family $((X_i, \tau_i))_{i \in I}$ of GT_6 -spaces, we have the initial *L*-topological space $(X, \tau = \bigvee_{i \in I} f_i^{-1}(\tau_i))$ is GT_6 .

Proof. We have also here, as in the previous proposition, for disjoint closed sets F, G in (X, τ) , there is a continuous mapping $h = g_i \circ f_i : (X, \tau) \to (I_L, \Im)$ such that $h^{-1}(\overline{0}) = F$ and $h^{-1}(\overline{1}) = G$, where g_i is an *L*-continuous mapping of (X_i, τ_i) into (I_L, \Im) such that $g_i^{-1}(\overline{0}) = f_i(F)$ and $g_i^{-1}(\overline{1}) = f_i(G)$. Thus, (X, τ) is a perfectly normal space and it is also, from Proposition 4.9, a GT_1 -space. Hence, (X, τ) is a GT_6 -space. \Box

From Propositions 5.4 and 5.5, we have the following result.

Corollary 5.1 The L-topological subspaces and the L-topological product spaces of a family of GT_6 -spaces are GT_6 -spaces.

Final GT_6 -spaces. The final *L*-topology $\tau = \bigwedge_{i \in I} f_i(\tau_i)$ of a family $(\tau_i)_{i \in I}$ of GT_6 -topologies with respect to $(f_i)_{i \in I}$ fulfills the following.

In case of one mapping we get this result.

Proposition 5.6 Let $f : X \to Y$ be a surjective L-open mapping and (X, τ) be a GT_6 -space. Then the final L-topological space $(Y, \sigma = f(\tau))$ is GT_6 .

Proof. Let F, G be disjoint closed sets in $(Y, \sigma = f(\tau))$, then from that f is surjective, it follows that there exists A, B two disjoint closed sets in X such that $A = f^{-1}(F)$ and $B = f^{-1}(G)$. Since (X, τ) is a GT_6 -space, then there exists an L-continuous mapping $g: (X, \tau) \to (I_L, \Im)$ such that $g^{-1}(\overline{0}) = A = f^{-1}(F)$ and $g^{-1}(\overline{1}) = B = f^{-1}(G)$. Since f is L-open implies f^{-1} is L-continuous, then $g \circ f^{-1}: (Y, \sigma) \to (I_L, \Im)$ is an L-continuous mapping such that $(g \circ f^{-1})^{-1}(\overline{0}) =$ $f(g^{-1}(\overline{0})) = f(A)) = F$ and $(g \circ f^{-1})^{-1}(\overline{1}) = f(g^{-1}(\overline{1})) = f(B) = G$. Thus, (Y, σ) is a perfectly normal space and it is also, from Proposition 4.12, a GT_1 -space. Hence, (Y, σ) is a GT_6 -space. \Box

Proposition 5.7 Let I be any class and $((X_i, \tau_i))_{i \in I}$ a family of GT_6 -spaces and $(f_i)_{i \in I}$ a family of mappings $f_i : X_i \to X$ which are surjective L-open for some $i \in I$. Then the final L-topological space $(X, \tau = \bigwedge_{i \in I} f_i(\tau_i))$ is GT_6 .

Proof. Similarly, as in the proof of Proposition 5.6. \Box

Now, we have the following result.

Corollary 5.2 The L-topological quotient spaces and the L-topological sum spaces of a family of GT_6 -spaces are GT_6 -spaces.

References

- J. Adámek, H. Herrlich and G. Strecker; *Abstract and Concrete Categories*, John Wiley & Sons, Inc. New York et al., 1990.
- [2] F. Bayoumi and I. Ibedou; On GT_i-spaces, J. of Inst. of Math. and Comp. Sci., Vol. 14, No. 3, (2001) 187 - 199.
- [3] F. Bayoumi and I. Ibedou; T_i-spaces, I, Journal of the Egyptian Mathematical Society, www.etms-web.org, Vol. 10 (2) (2002) 179 - 199.
- [4] F. Bayoumi and I. Ibedou; T_i -spaces, II, Journal of the Egyptian Mathematical Society, www.etms-web.org, Vol. **10** (2) (2002) 201 215.

- [5] F. Bayoumi; On initial and final fuzzy uniform structures, Fuzzy Sets and Systems, Vol. 133, Issue 3 (2003) 99 - 319.
- [6] F. Bayoumi and I. Ibedou; The relation between the GT_i -spaces and fuzzy proximity spaces, G-compact spaces, fuzzy uniform spaces, The Journal of Chaos, Solitons and Fractals, **20** (2004) 955 966.
- [7] F. Bayoumi, I. Ibedou; $GT_{\mathcal{J}_2^1}$ -spaces, I, Journal of the Egyptian Mathematical Society, www.etms-web.org, Vol.14(2) (2006) 243 264.
- [8] F. Bayoumi, I. Ibedou; $GT_{3\frac{1}{2}}$ -spaces, II, Journal of the Egyptian Mathematical Society, www.etms-web.org, Vol.14(2) (2006) 265 282.
- [9] C. L. Chang; *Fuzzy topological spaces*, J. Math. Anal. Appl., **24** (1968) 182 190.
- [10] A. Császár; *General Topology*, Akadémiai Kiadó, Budapest 1978.
- [11] P. Eklund and W. Gähler; Fuzzy filter functors and convergence, in: Applications of Category Theory To Fuzzy Subsets, Kluwer Academic Publishers, Dordrecht et al., (1992) 109 - 136.
- [12] S. Gähler and W. Gähler; Fuzzy real numbers, Fuzzy Sets and Systems, 66 (1994) 137 - 158.
- [13] W. Gähler; The general fuzzy filter approach to fuzzy topology, I, Fuzzy Sets and Systems, 76 (1995) 205 - 224.
- [14] W. Gähler; The general fuzzy filter approach to fuzzy topology, II, Fuzzy Sets and Systems, 76 (1995) 225 - 246.
- [15] J. A. Goguen; *L-fuzzy sets*, J. Math. Anal. Appl., **18** (1967) 145 174.
- [16] R. Lowen; Initial and final fuzzy topologies and fuzzy Tychonoff theorem, J. Math. Anal. Appl., 58 (1977) 11 - 21.
- [17] R. Lowen; A comparison of different compactness notions in fuzzy topological spaces, J. Math. Anal. Appl., 64 (1978) 446 - 454.