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Abstract

In this paper, we introduce the L-separation axioms G715 1 and G735 using the notion of L-
neighborhood filter defined by Géhler in 1995. We define also the axiom G7Tg depending on the
notion of L-numbers presented by Géahler in 1994. Denote by G'T;-space for the L-topological space
which is GT;, i = 2%7 5,6. The GT;-spaces, i = 0,1,2, 3, 3%, 4 had been introduced and studied by
the author in 2001 - 2004 in separate six papers. All the axioms GT; are based only on usual points
and ordinary sets and they are the usual ones in the classical case L = {0,1}. It is shown that the
axioms GT;, ¢ = 2%, 5,6 fulfill many properties analogous to the usual axioms and moreover, the
initial and the final of G'T;-spaces are also G'T;-spaces, i = 2%, 5,6.

Keywords: L-neighborhood filters; L-real numbers; GT;-spaces; G151 -spaces; Completely normal
2
spaces; GTs-spaces; Perfectly normal spaces; GTg-spaces.

1. Introduction

We had introduced in [2, 3, 4, 6, 7, 8] the L-separation axioms GT;,i = 0, 1,2, 3, 3%, 4
using the L-neighborhood filters at a point to define the axioms GT;, i = 0, 1,2 and
using the L-neighborhood filters at a point and at a set to define the axioms GT;,
i = 3,4, and by using the L-real numbers, defined by Géhler in [12], to define the
axiom GT3 1. We denote by a GT;-space for the L- topological space which is GT;,

i=0,1,2,3,3%,4.

In this paper, we define the GT5:-spaces and the GTs-spaces depending on the
2
L-neighborhood filters at a point and at a set, respectively. The GTs-space is defined
as a completely normal GT}-space.

We introduce also the GTg-spaces using the L-real numbers. The set of all L-
real numbers is called L-real line and is denoted by Ry, where L is a complete
chain. Here, using the L-topological space (I, ), where I = [0, 1] is the closed unit
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interval and < is the L-topology on I, a notion of perfectly normal L-topological
spaces is introduced. The GTs-spaces are the L-topological spaces which are GT;
and perfectly normal in our sense.

These L-separation axioms are extensions with respect to the functor w in sense
of Lowen ([17]), this means that an induced L-topological space (X,w(T)) is GT; if
and only if the underlying topological space (X, T) is T; for all i = 2%, 5,6. Moreover,
the implications between the axioms G715 1 GTs and GTg and the previous axioms
GT;, 1 =2,3,4 goes well. Counterexamples are given to assure these implications.

We show also that the initial and final L-topological spaces of a family of GT}-
spaces, © = 2%, 5,6, are GT;. Therefore the L-topological product spaces, subspaces,
sum spaces and quotient spaces of GT;-spaces, i = 2%, 5,6, are G'T;-spaces.

2. Preliminaries

Let L be a complete chain with different least and greatest elements 0 and 1, re-
spectively. Assume that an order-reversing involution « +— o’ of L is fixed. Denote
by L the set of all L-subsets of a non-empty set X. For each L-set f € LX, let f’
denote the complement of f, defined by f'(z) = f(x) for all z € X.

In the following the L-topology 7 on a set X in sense of ([9, 15]) will be used.
Denote by int, and cl, for the interior and the closure operators with respect to 7.
Let (X, 7) and (Y, 0) be two L-topological spaces. Then the mapping f : (X, 7) —
(Y, o) is called L-continuous provided int,g o f <int,(go f) for all g € LY. If T
is an ordinary topology on X, then the induced L-topology ([17]) on X is given by
w(T) = {f € L* | sof €T forall a € Ly}, where s,f ={z € X |a < f(x)}.

L-filters. By an L-filter on X ([11, 13]) is meant a mapping M : L*X — L such
that: M(@) < « holds for all @« € L and M(1) =1, and M(f A g) = M(f) AM(g)
for all f,g € L*. An L-filter M is called homogeneous if M(a) = « for all a € L.
For each z € X, the mapping & : LY — L defined by @(f) = f(z) for all f € L
is a homogeneous L- filter on X. If M and N are L-filters on X, M is said to be
finer than N, denoted by M < N, provided M(f) > N(f) holds for all f € L¥.
By M £ N we denote that M is not finer than .

A closure of an L-filter M on an L-topological space (X, 7) is the L-filter cl M
on X defined by ([14]):

AM(f) =\ Mlyg).

crg<f

For all L-filters £ and M on X we have ([14]):
L <M implies clL <clM (2.1)

and

M <M (2.2)



For each non-empty set A of L-filters on X, the supremum \/ M with respect
MeA
to the finer relation of L-filters exists and we have

(V M= N\ M)

MeA MeA

for all f € L* ([11]). The infimum A M doesn’t exist in general. The infimum
MeA

A M of A exists if and only if for each non-empty finite subset {My,..., M, }
MeA

of A we have My(fi) A+ AM,(fn) <sup(fi A---Afp) forall fi,..., f, € LX. 1If
the infimum of A exists, then for each f € LX and n as a positive integer we have
([11]):

(AMU) =V Mi(f)A AM(fa)).

MeA AN Afn<f,
My, Mp €A

If the infimum £; A L5 and the infimum M; A My, of L-filters L1, Ly and M, Ms
on X exist, respectively, then we have

L1 < My and Ly < My implies £1 A Lo < My A M, (2.3)

L-neighborhood filters. For each L-topological space (X, 7) and each z € X,
the L-neighborhood filter of the space (X, 7) at z is an L-filter N'(z) : LY — L on
X defined by N (z)(f) = int, f(z) for all f € L* ([14]). The L-neighborhood filter
N(F) at an ordinary subset F' of X is the L-filter on X defined, by the author in
[4], by means of N (z), z € F as:

N(F) = \/ N(x). (2.4)

zeF

L-real numbers. Géhler defined in [12] the L-real numbers as convex, normal,
compactly supported and upper semi—continuous L-subsets of the set of real numbers
R. Each real number a is identified with the crisp L-real number a™ by a™(§) = 1
whenever £ = a and a™(§) = 0 otherwise. The set of all L-real numbers is called
L-real line R;.

By Gahler’s L-unit interval ([12]) is meant the set I, defined by
I, = {zeR} |2<17},

where [ = [0,1] and R} = {x € R, | x(0) =1 and 0~ < z}. Géhler had showed
in [12] that the class

{Rolr, 1 0€1} UA{Ry, | 6} U {071}

is a base for an L-topology < on I, where R® and Rs are the L-sets of R, into L

defined by
Rs(z) = \/ z(a) and R(z) = (\/ z(a))

a>d a>éd



for all x € Ry, and § € R, and note that Rs|;,, R°|;, are the restrictions of Rs, R’
on Iy, respectively.

L-metric spaces. In the sequel will be shown that the L-metric space in sense
of S. Géhler and W. Géhler, which had been introduced in [10], is an example of our
GT3.-space. By an L-metric on a set X we mean ([10]) a mapping o : X xX — R7,
such that the following conditions are fulfilled:

(1) o(x,y) =0~ if and only if x =y
(2) o(z,y) = oy, ) (symmetry)
(3) o, y) < ol =) + o(z.y) (triangle inequality).
A set X equipped with an L-metric p on X is called an L-metric space.

Note that 0~ denotes the L-number which has values 1 at 0 and 0 otherwise.

To each L-metric p on a set X is generated canonically a stratified L-topology 7,
which has {eo0 g, | € €&, v € X} as a base, where g, : X — R is the mapping
defined by 0,(y) = o(z,y) and

£ ={anR|g: | 0>0, aeL}u{a | acl},
here @ has R} as domain and R‘S\Rz is the restriction of R’ on R} .

GT;-spaces. In [3, 4, 7] we had defined the L-separation axioms GT;, i =

0,1,2,3, 3%, 4, and in the following we recall some of these axioms which we need in

this paper. An L-topological space (X, 7) is called:

(1) GTy if for all 2,y € X with x # y we have & € N (y) and § £ N (x).
(2) GTy if for all z,y € X with x # y we have N'(z) A N (y) does not exist.

(3) regular it N'(z) AN (F) does not exist for all x € X, F € P(X) with F' = ¢, F
and z & F (or if N(z) = clN(x) for all x € X).

(4) GT; if it is regular and GT;.

(5) completely regular if for all x ¢ F' € 7/, there exists an L-continuous mapping
f:(X,7) — (I1,) such that f(z) =1 and f(y) =0 for all y € F.

(6) GT31-space (or an L-Tychonoff space) if it is GT} and completely regular

(7) normal if for all Fl,FQ € P(X) with Fl = ClTFl,FQ = CL-FQ and F1 N FQ = (Z)
we have N (F) AN (Fz) does not exist.

(8) GTy if it is normal and GT7.



Denote by GT;-space for the L-topological space which is GT;.
Proposition 2.1 [3, 4]

(1) Every GT;-space is GT;_y-space for each i = 1,2,3,4, and GTg: -spaces fulfill
the following:
every GTy-space is a GTg1-space and every GT9i-space is a GT3-space.
2 2

(2) The L-topological subspaces and the L-topological product spaces of a family of
GT;-spaces are GT;-spaces for each 1 = 0,1,2,3,4.

3. GTy.-spaces

Now, we shall introduce our notion of TH1-spaces in the fuzzy case. It will be called
2
GTy .1 -spaces.
2

Definition 3.1 An L-topological space (X, 7) is said to be GT5, if for all z,y € X
with x # y we have cl N (x) A cl N (y) does not exist.

By a GTyi-space we mean the L-topological space which is GT5..
2 2
In the following an example of a G5 -space.

Example 3.1 Let X = {z,y} in which # # y and let 7 = {0,1,21,91}. Then
{z} = cl.{z} and {y} = cl.{y}, and thus
AN(z)(z1) = \/ N()(9) = \ intrg(z) > intzq(z) =1.

clrg<z clrg<z1

Also, N (y)(y1) = 1. That is, there are f = z; € L* and g = y; € L¥ such that
AN (z)(f) Al N (y)(g) > sup(f A g). Hence, (X,7) is a GTQ%-space.

The following proposition states that the implication from GT5:-spaces to GT5-
2
spaces goes well.

Proposition 3.1 Every GTg. -space is GTy-space.
2

Proof. Since N (z) < clN(z), by means of (2.2), for all z € X, then from (2.3)
we get N () AN (y) < clN(x) A clN(y), and therefore cl NV (z) A cl NV (y) does not
exist implies NV (z) A M (y) does not exist as well. Thus for all z # y in X we have

N(x) AN (y) does not exist and hence (X, 7) is a GTy-space. O

The class of GT>-spaces is larger than the class of GT5:-spaces. In this example
2
we introduce a G'I;-space which is not GTQ%-Space.

bt



Example 3.2 Let the L-topological space (X, 7) be, in the crisp case, the space so
called Irrational Slope Topological Space. That is, X is the closed upper half plane
{(z,y) | vy > 0} in Q? and some irrational number @ is fixed, and 7 is defined as
follows: for each point (z,y) € X, the T-neighborhoods will be {(z,y)} U B.(*5%) U
B(*5%), where B(n) = {r € Q | n—¢ <r <n+e} forallp € R and for all
e > 0. Each 7-neighborhood of (z,y) consists of (x,y) itself plus two open intervals
centered at the two irrational points %y and ¥, and the lines joining these points
to (z,y) have slope 6. Hence, we get that (X,7) is a GTy-space and it is not a

GTy 1-space.

The following proposition and example show that the class of GT5:-spaces is
2
larger than the class of G'T3-spaces.

Proposition 3.2 Every GTj-space is a G191 -space.
2

Proof. Let # # y in X and (X, 7) a GTs-space. Then (X, 7) is a GT}j-space and
cdN(z) = N(x) for all x € X. Hence, z ¢ {y} € 7 and cIN(z) A cN(y) =
N (z) AN (y) does not exist, and thus (X, 7) is a GTy1-space. O

In this example we introduce a G'T9.1-space which is not G73-space.
2

Example 3.3 Let the L-topological space (X, 7) be, in the crisp case, the space so
called Half Disc Topological Space. That is, if P = {(x,y) € R? | y > 0} is the
open upper half plane with the natural topology T on it, and S denote the real-axis.
Then X = PUS and 7 is generated on X by adding to the elements of T" all sets of
the form {z} U (PNU), where x € S and U is the Euclidean usual neighborhood of
(x,0) in the plane R?. That is, 7 is generated by a basis consisting of two types of
neighborhoods: all open discs contained in P for all (z,y) € P, and open half discs
centered at {z} together with {z} itself for all z € S. Hence, we get that (X, 1) is
a GTQ%—space and it is not a GTj3-space.

Here, we show that the GTH.-space is an extension with respect to the functor
2
w in sense of Lowen ([17]).

Proposition 3.3 A topological space (X,T) is a To1-space if and only if the in-
2
duced L-topological space (X, w(T')) is a G191 -space.

Proof. If (X,T) is a Tyi-space and = # y in X, then there are O,, O, € T such
- . 2
that O, N O, = (). Taking f = xg., 9= Xo, we get that sup(f A g) =0, and from
that clyy f = f and clyr)g = g we get that
AN@ DAANG (@) =V intunh@) AV it k(y)
cly,ryh<f cl,(ryk<g
= intyr) f(z) Aintur)g(y) = 1.
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Hence, cl NV (z) A cl N (y) does not exist. That is, (X,w(T)) is a GTQ%-space.
Conversely; if (X,w(T)) is a GTy1-space, then for  # y in X, there exist
2
f,g € L* such that cIN(z) (f) AclN(y) (g) > sup(f A g), that is,

\V  intemh(z) A\ interk(y) > sup(f A g),
clyyh<f clormyk<g

which means that there exist A\, u € w(7')" such that int,ryA(z) A inty@yp(y) >
sup(f A g). Taking s, A and s,u for all a € Ly, we get two disjoint closed neighbor-
hoods of x and y, respectively. Hence, (X,T') is a Ti-space. O

2

The following proposition shows that the finer L-topological space of a GT91-
2
space is also a G'TH.1-space.
2

Proposition 3.4 Let (X, 7) be a GTy1-space and let o be an L-topology on X finer
2
than 7. Then (X, 0) is also a GTg.-space.
2

Proof. Let N,(z) and N, (z) be the L-neighborhood filters at = with respect to o
and 7, respectively. Since o O 7 means that N,(z) < N.(x) holds for all z € X,
then (2.1) implies that clN,(z) < cl N (z) holds for all x € X. Hence, we have
from (2.3), cl N, (x) A N, (y) < el Ny (z) A el Ny (y). Since cl N (x) A cl N (y) does
not exist, then cl N, (z) A cl N, (y) does not exist, that is, (X, 0) is a GT;-space. O

Initial GTy.-spaces. Consider a family of L-topological spaces ((X;,7;))icr-
2

The supremum \/ f; () of the family (f;*(7:))icr, where f; (7)) = {f; ' (g) | g €
iel

7} and f; © X — X, and the infimum A fi(7;) of the family (f;(7;))icr, where
iel
fi(n) ={g€ LX| f7'(g9) € 7} and f; : X; — X fulfill the following result.

Proposition 3.5 [5,16] \/ f; (%) and A fi(:) are the initial and the final, in the
iel i€l

categorical sense ([1]), of (7:)ier with respect to (f;)ier, respectively.

In the following we shall show that the initial L-topology 7 = V f; (%) of a
iel
family (7;);er of GT9:1-topologies with respect to (f;)ic; fulfills the following results.
2

At first consider the case of one mapping.

Proposition 3.6 Let f : X — Y be an injective mapping and (Y,0) be a GT9: -
space. Then the initial L-topological space (X, 7 = f~1(0)) is also GTo;.
2

Proof. From Proposition 3.5, we have f : X — Y is L-continuous. Since f : X — Y
is injective, then x # y in X implies f(x) # f(y) in Y and then there are g,h € LY

7



such that NV (f(z)) (9) AN (f(y)) (h) > sup(g A h), that is, ) \k/<g int,k(f(x)) A

V' int,I(f(y)) > sup(g A h). From that f is L-continuous, it follows (int,k) o f <

clyl<h

int, (ko f) and (cl,k) o f > cl. (ko f) for all k € L, and hence

\V int, (ko f)(x)A \ int,(lo f)(y) > sup(¢g \h) > sup(go f Aho f),
el (kof) <(g0f) ol (lof)<(hof)

where V (g AR)(y) > V (gAR)(f(z)) = VX(g o f Aho f)(x) in general, which

yey zeX x€
means that there are A\ = go f € L* and = ho f € LX such that

\/ intp@) A\ int€(y) > sup(A A p).

cl-n<A clrE<p

Hence, cl N (z) Acl N (y) does not exist in (X, 7 = f~!(0)) and therefore (X, f~!(c))
is a GTQ%—space. O

Assume now that a family ((X;,7;))ier of GT9.-spaces and a family (f;);e; of
2
mappings f; : X — X; which are injective for some ¢ € I are given where I may be
any class.

Proposition 3.7 For the family ((X;, 7;))icr of GT91-spaces, the initial L-topological
2
space (X, 7=V fi'(n;)) is also GTo: .
i€l 2

Proof. By a similar way, as in the proof of Proposition 3.6, we get that (X, 7) is
GTQ%—space. O

The subspaces and the product spaces of GT51-spaces, in the categorical sense,
2

are special initial GT5:-spaces ([1]), and therefore we have the following corollary.
2

Corollary 3.1 The L-topological subspaces and the L-topological product spaces of
a family of GTg.-spaces are also G191 -spaces.
2 2

Final GTQ%—spaces. The final L-topology 7 = A fi(7;) of a family (7;);es of
iel
GTy.-topologies with respect to (f;)ic fulfills the following.
2

In case of one mapping we get this result.

Proposition 3.8 Let f : X — Y be a surjective L-open mapping and (X, T) be a
GTg1-space. Then the final L-topological space (Y,o = f(7)) is also GTy. .



Proof. Since f is surjective, then a # b in Y implies there are x # y in X such
that a = f(z), b = f(y). (X,7) is GT9: implies there are g,h € L~ such that

AN (z) (g) A el N (y) (h) > sup(g A h). From (2.4), we have N(z) < N(f *(a))
and N (y) < N(f71(b)), and from (2.1), we get that cIN(z) < cIN(f~!(a)) and
AN{y) < AN(F1(B)). Hence, clA'(f~(a) (g) A cLN(F1(0)) () > suplg A )

that is, \V int,k(f~*(a))A V int I(f~1(b)) > sup(g A h), which means that
clrk<g cli<h

\/ f(intk)(a) A \/ f(int.1)(b) > sup(g A h).

clrk<g cl i<h

From that f is L-open, it follows

(int k) < int g £ )
for all k € LX, and hence \/ intyf(k)(a) AV intpe)f(1)(b) > sup(g A k) >
o, I<h

up(F(g) A F()), where
V(gAh) (@) >\ (AR W)=V (fl9) A f(h)(y)

zeX yey yey

in general, and also from that f is L-continuous we get

clynh(f(z)) = cl-(ho f)(z)
for all z € X and all h € LY, which implies

\/  intgemla) A\ inty&(b) > sup(f(g) A f(R)).

clyn<f(9) clyE<f(h)
Taking A = f(g) € LY and u = f(h) € LY we get
\/  intynk(a) A\ intpni(b) > sup(A A p).

clyrk<A clynyl<p

Thus, cl N (a) A cl N (b) does not exist and therefore (Y, f(7)) is a GT%—space. O
For any class I we have the following result.

Proposition 3.9 Let ((X;,7;))ier be a family of GTQ% -spaces and (fi)icr a family
of mappings f; : X; — X which are surjective L-open for some i € I. Then the final
L-topological space (X, 7= N fi(7;)) is also GTQ%.

iel

Proof. By using a similar proof, as in case of Proposition 3.8, we get that (X, 7) is
a GTy.-space. O
2

The quotient and the sum spaces of G715 1-spaces, in the categorical sense, are
special final GTo.-spaces ([1]) and therefore we have the following result.
2

Corollary 3.2 The L-topological quotient spaces and the L-topological sum spaces
of a family of GT91-spaces are also GT g1 -spaces.
2 2



4. GTs-spaces

In this section we shall introduce the G'T5-spaces and make for these spaces a similar
study to the study of GTQ%—Spaces.

Let (X, 7) be an L-topological space and let A, B C X. Then A, B are called
separated if ANcl,B=cl,ANB = (.

Definition 4.1 An L-topological space (X, 7) is called completely normal if for any
two separated sets A, B in X we have N (A) AN (B) does not exist.

Definition 4.2 An L-topological space (X, 7) is called GT5 if it is completely nor-
mal and G7T;.

A L-topological space (X, 7) is called a completely normal space or a GTs-space if it
fulfills the axioms of being completely normal or GT5, respectively.

We have the following example for G'T5-spaces.

Example 4.1 Let X = {z,y} with  # y and let 7 = {0, 1,21, y1}. Then {z}, {y}
are the only separated sets which fulfill the condition of being completely normal
and it is also GT;. Hence, (X, 7) is a GT5-space.

The following proposition shows that the implication between GTs-spaces and
G'Ty-spaces goes well.

Proposition 4.1 FEvery GTs-space is a GTy-space.

Proof. Let (X, 7) be a GT5-space. Then (X, 7) is GT; and completely normal. Since
any two disjoint closed subsets A, B in (X, 7) are separated, then N'(A) AN (B) does
not exist and thus (X, 7) is a normal space. Therefore, (X, 7) is a GTy-space. O

Here, an example for GT)-spaces which are not GTs-spaces.

Example 4.2 The Tychonoff Plank Space, in the crisp case, is an example for a
GTy-space and not GTs-space. It is known that the Tychonoff Plank Space (7', 7) is
defined as follows: The Tychonoff Plank 7" is defined to be [0,€] x [0,w], where
is the first uncountable ordinal and w is the first infinite ordinal, and both ordinal
spaces [0, Q] and [0, w] are given the interval topology, and 7 is the product interval
topology on T

In the following theorem there will be introduced some equivalent definitions for
the completely normal spaces.

10



Theorem 4.1 Let (X, 7) be an L-topological space. Then the following are equiva-
lent.

(1) (X, 7) is completely normal.
(2) Every subspace (A, T4) is normal.

(3) Ewvery open subspace (A, T4) is normal.

Proof. (1) = (2): Let N;(M) and N,,(M) be the L-neighborhood filters at a
subset M of X with respect to 7 and 74, respectively. Let B,C be two disjoint
closed sets in (A, 74). Then there are Fy, Fy € 7/ such that B=ANF, C = AN Fy
and BNC =AN(FANF) =0. Nowc,BNC =Bncl,C CAN(FNE) =0,
that is, B, C' are separated sets in (X, 7) and then we have N, (B) AN, (C) does not
exist. Since N, (B) = N,,(B) for all B C A, then N,,(B) AN,,(C) does not exist.
Hence, (A, 74) is a normal space.

(2) = (3): Clear.

(3) = (1): Let B,C be separated sets in (X, 7). Then C C cl,C \ cl,B = F},
B C cl,B\cl,C = F5, FiNF; = (). Both of F; and F; are closed in the open subspace
(A,74), where A = X\ (c,BNecl,C), Fi=cl,CNAand Fy =cl,BNA. (A, T4)is
normal implies N, (F1) A N, (Fy) does not exist, and since N (M) < N, (M) for
any subset M C X, then there are f,g € L* such that N.(F})(f) AN (F2)(g) >
sup(f A g) in (X, 7). Hence,

A int f(z) A A intrg(y) > A int.f(z) A A int.g(y) > sup(f A g),

zeC yEB r€F1 IS

which means that N.(B) AN, (C) does not exist, and therefore (X, 7) is a completely
normal space. O

From Theorem 4.1 and (2) in Proposition 2.1, we have the following result.

Corollary 4.1 If (X, 1) is a GT-space, then the following are equivalent.
(1) (X,7) is a GTs-space.
(2) Every subspace (A,7a) is a GTy-space.

(3) Ewvery open subspace (A, T4) is a GTy-space.

In the sequel, it will be shown that the L-metric space (X, 7,) in sense of Géhler,
which had been introduced in [12], is an example for our GT5-spaces, where 7, is
the stratified L-topology generated by the L-metric o on X. To prove this result,
we need the following proposition.
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Proposition 4.2 [7] Any L-metric space (X,1,) is a GTy-space.
Proposition 4.3 Any L-metric space (X, 7,) is a GT5-space.

Proof. Let F,G be two separated subsets of (X, 7,). Since any two separated sets
are disjoint and from Proposition 4.2, in which the proof does not depend on that
the two sets are closed, we get that N'(F) A N(G) does not exist. Hence, (X, 7) is
a GTs-space. O

Example 4.3 From Proposition 4.3, we get that the L-metric space (X, ) is an
example for our notion of GT5-space, and thus from (1) in Proposition 2.1 and from
Propositions 3.1, 3.2 and 4.1, we get that it is also an example of our G'I;-spaces,
1=0,1, 2,2%, 3,3%,4.

Proposition 4.4 [3] A topological space (X, T) is Ty-space if and only if the induced
L-topological space (X,w(T)) is a GT}-space.

Here we show that our notion of G'T5-spaces is an extension with respect to the
functor w in sense of Lowen ([17]).

Proposition 4.5 A topological space (X, T) is a Ts-space if and only if the induced
L- topological space (X,w(T)) is a GTs-space.

Proof. From Proposition 4.4, we get (X, T) is a Tj-space if and only if (X,w(T))
is a GTy-space. If (X,T) is completely normal and A, B are separated sets in
(X,w(T)), then A, B are separated in (X,T) and hence there are O4,0p € T
such that O4 N Op = 0. Hence, there are f = xp, € L*, g = xo, € L* for which

N(A(F) AN (B)(g) = N intur f () A/ intum)g(y) =1 > 0= sup(f Ag).

€A yeB

Thus N (A) AN (B) does not exist, and then (X, w(7T)) is a completely normal space.

Conversely, let (X, w(T")) be a completely normal space and A, B are separated
sets in (X,T). Then A, B are separated sets in (X,w(T)) and there are f,g € L*

for which A inty) f(z) A A intyryg(y) > sup(f A g). Since intyqr)f € w(T)
€A yeB

and intyp) f(x) > sup(f A g) for each x € A, then taking a = sup(f A g), we
get A C sq(intyr)f) and sq(intyr) f) € T. Similarly, we get B C s4(intyr)g)
and s, (int,ryg) € T. Hence, there are neighborhoods O4 = s,(int, ) f) and
Op = sq(intyr)g) of A and B, respectively, and moreover we get Oy N Op =
So(inty(r) f) N sa(intyryg) = 0. Thus, (X,T) is a completely normal space. O

The following proposition shows that the finer L-topological space of a GT5-space
is also a GTx-space.
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Proposition 4.6 [3] Let (X,7) be a GTi-space and let o be an L-topology on X
finer than 7. Then (X, o) is also a GT}-space.

Proposition 4.7 [4] Let (X,7) be a GTy-space and let o be an L-topology on X
finer than 7. Then (X, 0) is also a GTy-space.

Proposition 4.8 Let (X, 7) be a GTs-space and let o be an L-topology on X finer
than T. Then (X, 0) is also a GTs-space.

Proof. From Proposition 4.6, we get that (X, o) is a GTj-space. Let A C X. Then,
from Corollary 4.1, (X, 7) is GTs-space implies that (A, 74) is a GTy-space. Since
Ta C 04, then from Proposition 4.7 we have (A,04) is a GTy-space. Hence, from
Corollary 4.1 again, (X, 0) is a GTs-space. O

Initial GT5-spaces. In the following we shall show that the initial L-topology
7=V f}(n) of a family (7;)ie; of GTs-topologies with respect to (fi)ics fulfills the
iel

following results.

Proposition 4.9 [3]| Let (X;,7;) be a GTi-space for all i € I and let f; : X — X;
be an injective mapping for some i € I. Then the initial L-topological space (X, T)
1s also GT;.

Consider the case of I as a singleton.

Proposition 4.10 Let (Y,0) be a GTs-space and let f : X — Y be an injective
mapping. Then the initial L-topological space (X, 7 = f~Y(0)) is also GT5.

Proof. Let NV(F) N,(G) be the L-neighborhood filters at subsets F' and G of X
and Y with respect to 7 and o, respectively. If A, B be two separated subsets of
X, then from that f is injective, it follows f(A) Ncl,(f(B)) C f(A) N f(cl,B) =0
and f(B)Ncl,(f(A)) C f(B)N f(cl;A) = 0. That is, f(A) and f(B) are separated
sets in (Y, o) and thus N, (f(A)) AN, (f(B)) does not exist, which means that there
exist g, h € LY such that

A (intog)(f(z)) A A (intoh)(f(y)) > sup(g A h),

€A yeB

which means that

N ((integ) o f)(x) A A\ ((intoh) o f)(y) > sup((g o f) A (ho [)).

€A yeB

Because of that f: (X, 7= f~!(0)) — (Y,0) is L-continuous it follows (int.g) o f <
int,(go f) for all g € LY and thus we have

N (int-(go £))(@) A )\ (int-(h o f))(y) > sup((g o f) A (ho [)).

€A yeB

13



Thus there exist k = go f,l = ho f € L* such that

N (int, k) (z) A A (int1)(y) > sup(k A l).

€A yeDB

Hence, N, (A) A N, (B) does not exist, and thus (X,7 = f~!(0)) is a completely
normal space and it is also, from Proposition 4.9, a GTi-space. Therefore, it is a
GTs-space. O

Now consider the case of I be any class.
Proposition 4.11 For all i € I, let (X;,7;) be a GTs-space and f; : X — X;

a mapping of X into X; which are injective for some i € I. Then the initial L-
topological space (X, 1) is also GTs.

Proof. By a similar proof to what we have done in Proposition 4.10. O

From Propositions 4.10 and 4.11, we get the following result.

Corollary 4.2 The L- topological subspaces and the L-topological product spaces
of GTs-spaces are also GTs-spaces.

Final G'T5-spaces. Now we are going to show that the final L-topological space
(X, 7= A fi(r;)) of a family ((X;, 7;)):er of GTs-spaces is also a GT5-space.
iel

Proposition 4.12 [3] Let I be any class and (X;, ;) be a GT1-space for all i € T
and f; : X; — X a surjective L-open mapping for some i € I. Then the final
L-topological space (X, T) is also GT.

Proposition 4.13 If (X, 1) is a GTs-space and f : X — Y a surjective L-open
mapping, then the final L-topological space (Y,o = f(71)) is also GTs.

Proof. Let F,G be separated subsets of Y. Since f is surjective and continuous,
then f~1(F), f~1(G) are also separated closed subsets of X. From that (X, 7) is a
completely normal space, it follows N, (f~'(F)) AN (f7'(G)) does not exist, that
is, there are g, h € LX such that

A\ (int.g)(z) A A (int;h)(w) > sup(g A h),
zef—1(F) wef~HG)

which means

A (int-g)(f7 (@) A A (int-2)(f 7 (y)) > sup(g A h),

zeF yelG
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and this means

N\ (f(intrg))(z) A A (f(int;2))(y) > sup(g A h).

zeF yelG

Since f is L-open, it follows f(int,g) < int,(f(g)) for all g € L* and therefore

N (it f(9))(@) A N (intef(R)(y) > sup(f(g) A f(h).

zeF yeG

Hence, N, (F) AN, (G) does not exist, and thus the final L-topological space (Y, o =
f(7)) is completely normal and it is also from Proposition 4.12, a GT}-space, and
therefore it is G'T5-space. O

Proposition 4.14 Let I be any class and (X;, ;) be a GTs-space for all i € I
and f; : X; — X a surjective L-open mapping for some ¢+ € I. Then the final
L-topological space (X, T) is also GTs.

Proof. By means of Proposition 4.12, and by a similar way to the proof of Propo-
sition 4.13, the proof will come easily. O

Corollary 4.3 The L-topological sum spaces and the L-topological quotient spaces
of GTs-spaces are also GTs-spaces.

5. GTs-spaces

In this section we introduce the GTs-spaces and make a similar study to our studies
on the notions of GTH:-spaces and GTs-spaces. The GTg-spaces are defined, using
2

the L- unit interval Iy with the L-topology & defined by Géhler in [12], as follows.

Definition 5.1 An L-topological space (X, 7) is called perfectly normal if for all
F, G disjoint closed sets in X, there is an L-continuous mapping f : (X, 7) — ({1, )
such that f~1(0) = F and f~1(1) = G.

Definition 5.2 An L-topological space (X, 7) is called GTj if it is GT} and perfectly
normal.

An L-topological space (X, 1) is called a GTs-space ( a perfectly normal space) if it
fulfills the axiom of being GTg (perfectly normal).

Definition 5.3 A subset A of an L-topological space (X, 7) is called a Gg-set (F,-
set) if it is a countable intersection (union) of open (closed) sets.

15



The complement of an F,-set is a Gs-set and vice versa.

Definition 5.4 A subset A of an L-topological space (X, 7) is called functionally
closed if A = f~1(0) for some L-continuous function f : (X,7) — (I1,S). The
complement of a functionally closed set is called functionally open.

Let f and g be L-sets in X. Then a function h : X — I, is said to separate f and
gif0 < h(z) <Tforallz € X, z; < fimplies h(x) =T and y; < g implies h(y) = 0.
Moreover, if ® is a family of such functions on X, then the sets f, g € L* are called
®-separated or P-separable. That is, there exists a function h € ® separating them

([7)-

Lemma 5.1 [7] Urysohn’s Lemma Let (X, 1) be an L-topological space, and let
® be the family of all continuous functions f : (X,7) — (I1,S). Then (X, 1) is
normal if and only if for all F,G C X with F,G disjoint closed sets in X, there
exists a function f € ® which separates xr and xq.

Using Lemma 5.1, we shall prove the following result.

Lemma 5.2 Let A be a closed (open) subset of a normal space (X, 7). Then A is
a Gs-set (Fy-set) if and only if A is a functionally closed (open) set.

Proof. Let A be a closed Gs-set in (X, 7), then A’ is an F,-set, that is, A’ =

UN F,, F, € 7' for each positive integer n € N. By Urysohn’s Lemma, there
ne

exists a continuous function f, : (X,7) — (I,U), where (I,U) is (I1,<) in the crisp
case, such that f,(A) = 0 and f,(F,) = 1 for all n € N. Set g(z) = 2. Then
g: (X,7) — (I,U) is continuous, and for each z € A we get g(z) = 0 and when
x & A, there exists an index ng such that x € F,,,, and then g(z) > f’g;ﬁj’”) =555 > 0,
that is, g7'(0) = A. Taking the continuous function ~: (I,U) — (I, ) defined by
~ (i) =1 for all i € I, we get that (~ og) : (X,7) — (I1,S) is L- continuous and
(~0g)71(0) = g7'(0) = A. Thus A is functionally closed.

Conversely; suppose that there exists a continuous function f : (X, 7) — (I1,<)
such that f~!(0) = A where A € 7. Since the element x5 : I, — L, which has value
1 at 0 and 0 otherwise, is a closed Gs-set in (I1,S), then A = f~1(0) is a closed
Gs-set in (X, 7).

Taking the complements, we can show that A is an F,-set if and only if Ais a
functionally open set. O

Remark 5.1 Let F,G be two disjoint closed sets in (X, 7) and let f : (X,7) —
(I, ) be an L-continuous mapping. Then we have

f710) = Fand f7'(1) = G implies f(F) = 0and f(G) = 1.
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That is, in general, (X, 7) is a GTg-space implies that (X, 7) is a GTy-space. More-
over, if f is injective, we get that

f'0) = Fand f1(1) = G «— f(F) = 0and f(G) = 1.

In the next theorem, we introduce an equivalent definition for our GTg-spaces.

Theorem 5.1 The following are equivalent.
(1) (X,7) is a GTg-space.
(2) (X,7) is a GTy-space and every open set is an Fy-set.
(3) (X, 7) is a GTy-space and every closed set is a Gs-set.

Proof. (1) = (2): Since for any disjoint closed subsets F, G of X, there exists an
L-continuous function f : (X, 7) — (I, ) such that f~1(0) = F and f~}(1) = G,
then from Remark 5.1 we have f(F) = 0 and f(G) = 1. Hence, by Lemma 5.1,
(X, 1) is a GTy-space. Now, let A € 7, then for A’ € 7/ we get that f~!(0) = A’ and
then A’ is functionally closed. Hence, from Lemma 5.2, we get that A’ is a Gs-set
and thus A is an F,-set.

(2) = (3): Obvious.

(3) = (1): If F, G are two disjoint closed sets in X, then F'= (| A, where each
neN
A, isopen and also G = (| B, where each B, is open. Since (X, 7) is a GT-space,
neN
then from Urysohn’s Lemma we have continuous functions f,, g, : (X,7) — (I,U)

such that f,(F) =0, f.(A,) =1 and ¢,(G) = 0, g,(B),) = 1 for all n € N. Set

fr(x) = fg—f”) and fg(z) = ggiglw)'

Define f: (X,7) — (I,U) by f(x) = W@fﬁ;(wﬁ which means that

P 1t B
fn(2) + gn(2) fu(@) + gn(2)

Then f~1(0) = F and f~'(1) = G and f itself is continuous. Using the continuous

function ~ : (I,U) — (I,S) defined by ~ (i) = ¢ for all i € I, we get that

(~ of) : (X,7) — (I,S) is L- continuous and (~ of)~}(0) = f~1(0) = F and

(~of)7(1) = f71(1) = G. Hence, (X, 1) is a GTg-space. O

Now, we have an example for GTs-spaces.

Example 5.1 Let X = {z,y} with # # y and let 7 = {0,1,z1,y1}. Then 7/ =7
and then {z} = cl,{z} and {y} = cl. {y}.

Since f: (X, 7) — (I1,S) defined by f(z) =1 and f(y) = 0 is an L-continuous
mapping, and also it is injective, then from Remark 5.1 we get that f~(1) = {z}
and f71(0) = {y}. Tt is clear that (X, 7) is a GT}-space. Thus, (X, 1) is a GTg-space.
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The following proposition and example show that the class of G'T5-spaces is larger
than the class of GTg-spaces.

Proposition 5.1 Fvery GTy-space is a GTs-space.

Proof. Since (X, 7) is a GTg-space. That is, by Theorem 5.1, (X, 7) is GT, and
every open set is an F,-set. Then for an open set A, and for any two disjoint closed
sets B,C in (X, 7), we have NV (B) AN,(C) does not exist, and since A = J F),,

ne
F,, € 7/, then the disjoint closed subsets F'= AN B and G = ANC of A are disjoint
closed sets in (A, 74) with

A it f(z) AN intr,g(y) > N int, f(z) A/ intrg(y) > sup(f A g)

zeF yeG zeB yeC

for some f, g € L*, that is, NV, (F) AN, (G) does not exist and thus N, (F) AN, (G)
also does not exist. Hence, the open subspace (A4, 74) is GT, and therefore, (X, 7)
is a GTs-space. O

We introduce in the following example a G'T5-space which is not GTs-space.

Example 5.2 Let X = {z,y, 2z} where all the elements are distinct, and let

T={0, Ly, y1,2: VYL, @ Vy,yi Ve, o VL, Va2 Vys Ve, os Vi Vb

Then
7= {G,T,x%,xl,zl,xl Vys, o Va,es VoV, Vyr Ve, oV V 21},

and there are only {z}, {z} as disjoint closed sets in (X, 7). Since any mapping
f:(X,7) — (I1,S) such that f~'(1) = {z} and f~'(0) = {2} is not L-continuous,
then (X, 7) is not perfectly normal and thus it is not a GTg-space.

Now, we prove that (X, 7) is a GTs-space. At first (X, 7) is a GT;-space from
that:

At x # f:x%Vy%ELX,g:yleLX implies

W~ o

= sup(f A g),

N | —

N(@)(f) AN(y)(g) = >

Aty # 2 fzylELX,g:y%\/zleLXimplies

N@)(F) AN ()(9) =1 5 =su(f Ag),

Atz f=x21Vy ELX,g:y%\/zl € LY implies
1
N@) (/) AN(y)(g) =1 > 5 =sup(f A g).

18



Since
{z}nc{yt = {z}nX # 0 = {z}n{y} = cl{z}N{y};
{yynel{z} = {ytn{z} =0 # Xn{z} = cl{y}n{z};
{z}ncl{z} = {z}n{z} = 0 = {z}n{z} = cl {z}n{z},

then there are only {z} and {z} as two separated sets in (X, 7). As in before,
f=xVy € L%, g=yi V€ LY implies

N AN = 1> 5 =sul(f Ag)

and thus (X, 7) is a completely normal space. Hence, (X, 7) is a GT5-space and is
not a G'Ti-space.

Now, we show that our notion of GTj-space is an extension with respect to the
functor w in sense of Lowen ([17]).

Proposition 5.2 A topological space (X, T) is Ts-space if and only if the induced
L-topological space (X,w(T)) is a GTs-space.

Proof. By means of Proposition 4.4, we have (X,T) is T equivalent to that
(X,w(T)) is GT;.

Now, let F,G be two disjoint closed sets in (X,w(7")). Then F,G are disjoint
closed in (X, T). Since (X,T) is perfectly normal, then there exists a continuous
mapping g : (X,T) — (I,U) such that g~'(1) = F and g~ '(0) = G. Since k € w(T)
implies that s,k € U for some o € Ly, and that s,(g7'(k)) = g '(s.k) € T, which
means that ¢g7' (k) € w(T), and hence g : (X,w(T)) — (I,w(U)) is L-continuous.

Consider the L-continuous mapping f : ([,w(U)) — (I1,S), f(a) = @ for all
a €. Then (fog): (X,w(T)) — (I1,S) is L-continuous such that

(fog) ' M=g (/@) =g () =F
and

(fog) (0) =g ' (f(0) =97'(0) =G.
That is (X,w(T)) is a GTg-space.

Conversely, let F, G be two disjoint closed sets in (X, 7). Then F, G are disjoint
closed in (X,w(T)). Since (X,w(T)) is perfectly normal, then there exists an L-
continuous mapping g : (X, w(T)) — (I, ) such that g7'(1) = F and ¢~ '(0) = G.
Since we deal with ordinary subsets, then from the identifications 7" with w(7T)
and U with & in the crisp case, we get that there exists a continuous mapping

f:(X,T) — (I,U) such that f~'(1) = F and ¢g~'(0) = G. Hence, (X,T) is a
Ts-space. O

The following proposition shows that the finer L-topological space of a GTj-space
is also a GTg-space.
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Proposition 5.3 Let (X, 1) be a GTg-space and let o be an L- topology on X finer
than 7. Then (X, 0) is also a GTg-space.

Proof. From Proposition 4.6, we get (X,o) is a GTj-space. Let F,G be two
disjoint closed sets in (X, o). Then 7 C ¢ implies that F, G are disjoint closed in
(X, 7) and hence there exists an L-continuous mapping f : (X,7) — (I, ) such
that f~1(1) = F and f~!(0) = G. Also, 7 C ¢ implies that f : (X,0) — (I, ) is
L-continuous, and therefore (X, o) is a GTg-space. O

Initial GT;-spaces. The initial L-topology 7 =V f; (7)) of a family (7;)ies of
i€l
GTs-topologies with respect to (f;);es fulfills the following results.

At first consider the case of one mapping.

Proposition 5.4 Let f: X — Y be an injective mapping and (Y, o) be a GTg-space.
Then the initial L-topological space (X, 7 = f~1(0)) is GTs.

Proof. Let F,G be disjoint closed sets in (X, 7), then from that f is injective
it follows f(F'), f(G) are disjoint closed sets in (Y, o) and thus there exists an L-
continuous mapping g : (Y,0) — (I1,S) such that ¢71(0) = f(F) and g7 '(1) =
F(G). Hence, (g0 £)'(0) = f(g(0) = f~'(f(F)) = F and (g0 f)'(T) =
Y97 H1)) = f7Yf(G)) = G. That is, there is a continuous mapping h = go f :
(X,7) — (I1, ) such that h71(0) = F and h™!(1) = G. Thus, (X, 7) is a perfectly
normal space and it is also, from Proposition 4.9, a GTj-space. Hence, (X, 7) is a
GTgs-space. O

Assume now that a family ((X;,7;))ier of GTg-spaces and a family (f;);er of
mappings f; : X — X, which are injective for some ¢ € I are given, where I may be
any class.

Proposition 5.5 For the family ((X;,7;))icr of GTs-spaces, we have the initial
L-topological space (X, 7=\ f(r:)) is GT.
i€l

Proof. We have also here, as in the previous proposition, for disjoint closed sets
F,G in (X, 1), there is a continuous mapping h = g;o f; : (X,7) — (I, ) such that
h71(0) = F and h™(1) = G, where g; is an L-continuous mapping of (X, 7;) into
(I, ) such that g; ' (0) = f;(F) and g; *(I) = fi(G). Thus, (X,7) is a perfectly
normal space and it is also, from Proposition 4.9, a GTj-space. Hence, (X, 7) is a
GTs-space. O

From Propositions 5.4 and 5.5, we have the following result.

Corollary 5.1 The L-topological subspaces and the L-topological product spaces of
a family of G'Tg-spaces are GTg-spaces.
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Final GTs-spaces. The final L-topology 7 = A fi(7;) of a family (7;);e; of
iel
GTgs-topologies with respect to (f;);es fulfills the following.

In case of one mapping we get this result.

Proposition 5.6 Let f : X — Y be a surjective L-open mapping and (X, 7) be a
GTs-space. Then the final L-topological space (Y,o0 = f(1)) is GTg.

Proof. Let F,G be disjoint closed sets in (Y,o = f(7)), then from that f is
surjective, it follows that there exists A, B two disjoint closed sets in X such that
A = fY(F) and B = f71(G). Since (X,7) is a GTs-space, then there exists
an L-continuous mapping g : (X,7) — (I7,S) such that ¢7'(0) = A = f~Y(F)
and ¢g7!'(1) = B = f~'(G). Since f is L-open implies f~! is L-continuous, then
gof=t:(Y,o) — (I1,) is an L-continuous mapping such that (go f~1)71(0) =
F(g70)) = £(A)) = F and (go ) (T) = f(g71(T)) = £(B) = G. Thus, (¥,0) is
a perfectly normal space and it is also, from Proposition 4.12, a GTi-space. Hence,
(Y,0) is a GTg-space. O

Proposition 5.7 Let I be any class and ((X;,7;))ier a family of GTs-spaces and
(fi)ier a family of mappings f; : X; — X which are surjective L-open for some
i € I. Then the final L-topological space (X, 7= A fi(1;)) is GTg.

i€l

Proof. Similarly, as in the proof of Proposition 5.6. O

Now, we have the following result.

Corollary 5.2 The L-topological quotient spaces and the L-topological sum spaces
of a family of G'Ts-spaces are G'Tg-spaces.
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